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The repeat-dose and developmental toxicities of certain petroleum refinery streams are related to their
polycyclic aromatic compound (PAC) content (Feuston et al., 1994). Building on this foundation, and work-
ing within the context of the US EPA High Production Volume (HPV) Chemical Challenge Program, we:

(1) characterized relationships between PAC content and repeat-dose and developmental toxicities of
high boiling petroleum substances (HBPS), and

(2) developed statistical models that can be used to predict critical effects of similar untested substances.

Data from 39 dermal toxicity studies of HBPS were used to develop statistical models to predict the dose-
response relationships between the weight percent concentration of each of their 1-7 aromatic ring classes
and 4 repeat-dose and 3 developmental endpoints (absolute thymus weight, hemoglobin count, platelet
count, liver to body weight, live fetus count, fetal weight, and percent resorptions). The correlations
between the observed and model-predicted values are >0.90. The predictive ability of the models was
tested via a series of evaluation or corroboration methods.

As is shown in the paper, using only compositional data of untested HBPS, the models can be used to pre-

dict the effect at a given dose or the dose that causes an effect of a stipulated magnitude.

© 2012 Published by Elsevier Inc.

1. Introduction

A project was initiated to investigate the potential relationship
between the polycyclic aromatic compound (PAC) content and the
acute, repeat-dose, developmental, reproductive and genetic toxic-
ities of HBPS. Two objectives of the project were to:

(1) identify and characterize relationships between PAC content
and screening information data set (SIDS) mammalian toxic-
ity endpoints, and

(2) determine if any identified relationships could be employed
to predict the toxicity of untested high-boiling petroleum
substances, i.e., substances whose final boiling point
is > approximately 650 °F (343 °C).

* Corresponding author. Fax: +1 202 682 8270.
E-mail addresses: mark.nicolich@gmail.com (M.J. Nicolich), barryjsimpson@b-
tinternet.com (B.J. Simpson), jmurray2@sbcglobal.net (F. Jay Murray), rroth@roth-
tox.com (R.N. Roth), grayt@api.org (T.M. Gray).
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This paper describes the data definition, selection, and collec-
tion procedures; the statistical model development, the final se-
lected model forms, and the model testing and corroboration for
the repeat-dose and developmental toxicity models.! Other papers
in this series will describe the relationship between aromatic con-
tent and repeat-dose endpoints, the relationship between aromatic
content and developmental toxicity results, the results of bacterial
mutagenicity modeling and chromosomal aberration testing, the
application of the repeat-dose and developmental toxicity model
predictions to characterize samples for which toxicity data are not
available, and how the model predicted values compare to
traditional indices of toxicity. The available data indicated the sub-

! In this paper, and other papers in this Supplement, we have chosen to not use the
term validation to refer to the process of demonstrating that the model predictions are
similar to real-world observations. As pointed out by Oreskes and colleagues (1994),
the intrinsic meaning of a validated model is that the model has been shown to be true
or an accurate representation of reality when it is really meant to imply that there has
been a demonstration of consistency between the model and reality. Based on the
recommendation of Council for Regulatory Environmental Modeling (US EPA, 2009),
we have chosen to use the word corroborate or evaluate rather than validate.
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stances that were studied were associated with low acute toxicity;
therefore we could not develop statistical acute toxicity models.

2. Background

The United States Environmental Protection Agency (US EPA), in
partnership with industry and environmental groups, announced a
voluntary chemical data collection effort called the High Produc-
tion Volume (HPV) Challenge Program. In this program US manu-
facturers and importers of HPV chemicals were invited to
voluntarily “sponsor” chemicals. Sponsorship involved the com-
mitment to develop summaries of existing health and environmen-
tal effects data for HPV chemicals (those chemicals that are
produced in or imported into United States in aggregate quantities
of one million pounds or more per year) and to conduct new test-
ing to fill any data gaps needed for the objectives of the program
(US EPA, 2000).

Approximately 400 petroleum substances, defined by their
Chemical Abstract Service Registry Number (CAS RN), were spon-
sored through the American Petroleum Institute (API) by compa-
nies belonging to the API managed Petroleum HPV Testing Group
(PHPVTG), and, approximately 110 are potentially impacted by
the analysis described in this and the subsequent reports.

The authors of the summaries of health effects and test plans for
the HPV categories of aromatic extracts, crude oil, gas oils, heavy
fuel oils, lubricating oil basestocks, waxes and related materials,
and petroleum waste streams either stated or implied that the re-
peat-dose, genetic, developmental and reproductive toxicities of
the category members were associated with PAC content and that
the PAC content of these substances could be used to predict the
toxicity of similar, untested petroleum substances.

The basis for these claims was a publication by Feuston et al.
(1994) that examined the correlation between the weight percent-
age of several chemical classes of compounds in thirteen refinery
streams and the biological endpoint effects in rats that were der-
mally exposed in repeat-dose and developmental toxicity studies.
Feuston et al. (1994) showed that for these streams relationships
existed between the rank of the lowest observed effect level (LOEL)
in the toxicity studies and the rank concentration of various classes
of refinery stream components measured using two different ana-
lytical methods. Significant rank correlations were found between
the endpoints and the individual and combined PAC-ring classes
containing three or more rings, but no significant rank correlations
were found between the biological endpoints and the concentra-
tions of non-aromatic, 1-ring class, 2-ring class, and 1- and 2-ring
classes (with the exception of skin irritation). The relationships
were lost when the correlations were based on the observed values
rather than the ranks; an indication that the relationships are com-
plex. Because the relationships were based on combined aromatic-
ring classes (ARCs) they could not take advantage of the differential
information from individual ARC concentration measures, which
we later found to be important for predictions. Also, because the
relationships were based on ranks, the responses for untested
materials could not be predicted. Nonetheless, the Feuston et al.
(1994) study was an important impetus that led to this expanded
evaluation of laboratory studies that had both compositional data
(aromatic content) and toxicity data on the same substance and
to the development of the models presented in this paper.

The present evaluation of the relationship between PAC content
and repeat-dose, developmental and reproductive toxicity has been
completed and the resulting report has undergone a TERA peer con-
sultation (Patterson et al., 2013; Simpson et al., 2007, 2008). This pa-
per describes the data definition, selection, and collection, the
thought processes applied in the model development, the final se-

lected model forms, and the steps applied in model testing and cor-
roboration for the repeat-dose and developmental toxicity models.

3. Materials and methods
3.1. Terminology

The following are the definitions of terms used in this
publication:

Polycyclic aromatic hydrocarbons (PAHs): compounds of two or
more fused aromatic rings consisting of only carbon and hydrogen
atoms.

Polycyclic aromatic compound (PAC): a comprehensive term that
includes PAHs and molecules in which one or more atoms of nitrogen,
oxygen, or sulfur replace one of the carbon atoms in the ring system.

Aromatic-ring class (ARC) profile: the weight percent of each
class of the DMSO-soluble 1-7 and larger aromatic-ring com-
pounds present in a petroleum substance as determined by the
Method Il chemical characterization procedure (Blackburn et al.,
1996; Gray et al, 2013; Roy et al,, 1985, 1988, 1994), e.g. the
ARC 3 value would be the weight percent of the DMSO-soluble
3-ring aromatic compounds within the petroleum substance.

3.2. Data sources

Four potential sources of information were identified for data
that could be used in the analyses:

(1) a previously published report by Feuston et al. (1994),

(2) other published literature on the toxicity of individual PAHs
and PAC containing materials,

(3) company laboratory reports of toxicity studies of petroleum
substances that had accompanying PAC compositional data
of the test sample, including those of the studies conducted
on the thirteen samples in the Feuston et al. (1994) study, and

(4) laboratory reports of toxicity and analytical studies spon-
sored by APL

Of the four sources of information, only the company and API
laboratory reports provided a sufficient number of studies and in-
cluded sufficient detailed compositional data of the aromatic-ring
content of the test samples to be of use in this evaluation. The
materials that had been tested in the submitted studies covered
a range of petroleum substances most of which were high-boiling.
We limited the samples to HBPS with final boiling
points > approximately 650 °F (343 °C). These substances contain
fused aromatic-ring compounds with >3 rings, which are the
PAC compounds of interest for repeat-dose toxicity (Feuston
et al., 1994). Substances with lower final boiling points are not ex-
pected to contain PAC compounds with >3 aromatic rings.

The laboratory reports consisted of:

(1) 47 repeat-dose toxicity studies (nineteen 28-day and
twenty-eight 90-day),

(2) 68 developmental toxicity studies,

(3) two reproductive toxicity studies, each with only a single sex
dosed,

(4) one limited one-generation reproductive toxicity study,

(5) one exploratory dose range-finding study in non-pregnant
female rats, and

(6) 157 analytical reports of compositional data on the tested
substances.

All of the unpublished company laboratory reports (toxicity and
analytical) were judged to be either “reliable without restrictions”
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or “reliable with restrictions,” (reliability scores of 1 or 2 Klimisch
et al., 1997).

Forty-six of the 47 repeat-dose toxicity studies had been carried
out in Sprague Dawley rats exposed via the dermal route, the
exception being a 10-week study in mice on sample 86001. This
mouse study was not used in the current evaluation, but has been
published in Feuston et al. (1997). We restricted the samples to
those tested by the dermal route because, except for certain sub-
stances in the lubricating oil basestock and waxes categories, der-
mal contact is considered to be the most likely route of human
exposure for HBPS. Note that one 13-week study (sample 86187)
included two orally exposed groups (males) and four dermally ex-
posed groups (males and females); only data from the dermally ex-
posed animals were used in this evaluation. All of the studies used
in our evaluation were conducted in Sprague Dawley rats, included
one concurrent control group, and most included three dosed
groups.

Of the 68 developmental toxicity studies, 64 involved dermal
administration on Sprague Dawley rats. Among these studies, 29
were of traditional design in which the pregnant rats were exposed
during gestation and the uterine contents were examined during a
cesarean section just prior to birth. We termed these studies “Type
I” developmental toxicity studies. The remaining 35 developmen-
tal toxicity studies were of a design in which pregnant rats were
exposed during gestation, litters were allowed to be delivered nat-
urally, and observations were made on the day of birth through
postnatal day (PND) 4. These studies were termed “Type II” devel-
opmental toxicity studies.

Analytical data on the test substances from the 46 dermal re-
peat-dose and the 64 dermal developmental toxicity studies were
captured from the corresponding analytical reports.

The toxicology data that were extracted were the standard mea-
surements collected in guideline studies that were both biologi-
cally meaningful and could be used to define a point of
departure, such as a Lowest Observed Effect Level (LOEL) in a dose
response curve. The endpoints on which data were extracted are
similar to those that are characterized during guideline studies
for repeated dose dermal toxicity (OECD, 1981a), subchronic der-
mal toxicity (OECD, 1981b), prenatal developmental toxicity
(OECD, 2001) or a combined screen for systemic and reproductive
toxicity (OECD, 1996). For additional details on the selection of
studies for use in the repeat-dose and developmental models
building process, see Roth et al. (2013) and Murray et al. (2013),
respectively.

There were 157 analytical reports that provided information on
the PAC content of the test samples. A number of different analyt-
ical techniques were used in these reports, and as will be discussed
in more detail below, the technique that was identified as being
the most useful was “Method II.” This method is described in Gray
et al. (2013) as a method in which the extractable ring class aro-
matic components are extracted with DMSO. The weight percent
of each of the seven ring classes of aromatic compounds present
in the DMSO extract are separated by ring number with gas chro-
matography to give the aromatic-ring class profile (ARC profile).

3.3. Data selection

Several overlapping sets of criteria were applied to the toxicity
studies used in this study to ensure the studies were of uniform
quality, had similar study protocols, and were suitable for statisti-
cal modeling. Data were included in the final modeling effort if
they met the following criteria®:

2 See Simpson et al. (2007, 2008) for descriptions of earlier versions of the models
and the data used to build them.

(1) The test material was a HBPS.

(2) Test substance compositional data was developed using
Method II.

(3) Biological data on the test substance was from a repeat-dose
or a developmental dermal toxicity study consistent with
current international study guidelines.?

(4) Treatment groups in the repeat-dose studies had less than
50% mortality.*

(5) Daily dosing in developmental toxicity studies was for the
total gestation period (i.e., gestation days [GD] 0-19).>

(6) Developmental toxicity data were from “remote” not “prox-
imal” control groups.®

(7) Developmental toxicity data were from groups where there
were four or more dams with viable fetuses or litters.”

Table 1 summarizes the availability of studies and the final
number used in the modeling effort. For additional details on the
selection of studies for use in the repeat-dose and developmental
models building process, see Roth et al. (2013) and Murray et al.
(2013), respectively. One sample from the Feuston et al. (1994)
study, light catalytically cracked naphtha, was not included in this
study because it is not a HBPS.

3.4. Data integration

The initial evaluation of which biological endpoints should be
identified for statistical model building considered all the data cap-
tured from the repeat-dose and developmental toxicity studies.
The three criteria used to select the endpoints were:

(1) most often reported as statistically significantly affected,
and therefore most likely due to PAC exposure,

(2) affected most often at the study’s LOEL (i.e., those effects
that would be traditionally considered for choice as the
chemical’s critical effect) since they are most sensitive to
PAC exposure, and

(3) consistent with reported effects of PACs or PAC-containing
petroleum products.

3 Repeat dose (OECD 410 and 411) and developmental (OECD 414) toxicity
guidelines.

4 The high mortality criterion was applied to remove groups where the maximum
tolerated dose (MTD) had likely been surpassed and the surviving animals might not
be representative of the general population or other animals in the study.

5 The dosing period was not the same in all the developmental toxicity studies from
which data were extracted, and in some cases not the same among dose groups
within a study. To ensure the modeling results were comparable, only data from
studies and dose groups that included daily dosing on GD 0-19, as a minimum, were
used. This included studies with dosing on GD 0-19, or GD 0-20 or from pre-mating
day 7 to GD 20. If a dose group was administered the test material every other day,
the dose group was not included.

6 Several of the developmental toxicity studies had two control groups: (1) a
remote control group and (2) a proximal control group. In all studies with two control
groups, only data from the remote control group was used for modeling. The remote
control group was housed in a different animal room than the exposed animals in
order to avoid inhalation exposure to the test material. The proximal control group,
which was housed in the same animal room as the exposed animals, was excluded
from modeling since this control group may have had some inadvertent or indirect
inhalation exposure to the test material, even though the exposure was through the
dermal route.

7 Data from dose groups with three or fewer dams with viable fetuses in Type I
developmental toxicity studies were excluded from the modeling and statistical
analyses. Of the Type I developmental toxicity studies available in the modeling
exercise, the number of mated females per group typically ranged from 10 to 25.
Because the modeling weighted each data point (dose group) equally, it was
important to exclude data that were based on a small group size. The variability
associated with small group sizes is typically greater than that based on larger group
sizes. Consequently, there is less confidence and greater uncertainty associated with
these data points.
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Table 1
Availability of repeat-dose and developmental toxicity studies.

Repeat-dose

Developmental Total

28-day Studies

90-day Studies Total

Type I Studies® Type II Studies® Total

Studies reviewed by Petroleum HPV Testing Group 19 28
Studies from which data were extracted 19 27
Studies used for preliminary modeling 19 26
Studies used for final modeling 1 17

47 33 35 68 115
46 29 35 64 110
45 23 34 57 102
18 21 0 21 39

¢ Type I studies - pregnant females exposed during gestation, caesarean section on day 20 of gestation.
b Type II studies — pregnant females exposed during gestation, dams allowed to deliver and pups monitored through day 4 of lactation.

After completing the preliminary quantitative assessment, four
repeat-dose and three developmental toxicity endpoints were se-
lected (see Table 2) for final statistical characterization based on
the following three criteria:

(1) whether an endpoint would be considered an adverse effect
or predictive of an adverse effect,

(2) whether similar endpoints had also been characterized, thus
making the analysis redundant (e.g. among hematocrit,
hemoglobin concentration, and erythrocyte count, only
hemoglobin concentration was identified for modeling), and

(3) the strength of the relationship of the preliminary statistical
dose-response characterization.

The first two criteria were given more weight than the third.

The data sets for each of the seven endpoints averaged approx-
imately 71 data points and 19 studies per endpoint. Sets of compo-
sitional (ARC profile) and effects data were developed for each of
the seven endpoints. In addition to the seven ‘critical’ endpoints,
a data set for maternal absolute thymus weight was developed
and as a source for model testing (see Section 5).

Maternal toxicity endpoints were not selected for statistical
analysis because the goal of the project was to determine whether
developmental toxicity, not maternal toxicity, could be predicted
based on PAC content. As a practical matter, among the available
developmental toxicity studies maternal toxicity was not ideal
for modeling. For example, it was not possible to get consistent
data for maternal body weight, body weight gain, and food con-
sumption because they were measured on different days of gesta-
tion in the different studies. Preliminary evaluations suggested
that developmental toxicity was strongly associated with maternal
toxicity (e.g. decreased maternal body weight, weight gain, and/or
food consumption, skin irritation), and there was no strong evi-
dence of developmental toxicity in the absence of maternal toxicity
among the studies modeled. For purposes of this project, because
the objective of the project was to predict developmental, not

Table 2
Biological endpoints selected for final statistical characterization and number of
dependent variable data points used in modeling.

Study type Dependent variable n¢
Repeat-dose toxicity Thymus weight (absolute) 84
Platelet count 85
Hemoglobin concentration 98
Liver weight (relative?®) 90
Developmental Type 1 toxicity = Fetal body weight 59
Live fetuses/litter 59
Percent resorptions 59

Corroboration® Maternal thymus weight (absolute) 29

@ Relative to terminal body weight.

> Maternal thymus weights were utilized as an alternate data source when the
models were tested (see Section 5).

¢ Number of dependent variable data points used in modeling.

maternal, toxicity, it did not matter whether maternal toxicity
played a role in producing developmental toxicity.

4. Statistical model development
4.1. Modeling methods

A statistical model of the dose response curve was developed
for each of the seven biological endpoints selected for final model-
ing and for the maternal thymus weight endpoint selected for
model testing (Table 2). The models for each endpoint were devel-
oped independently, using an iterative process. Models were
developed using general regression analysis methods with the bio-
logical endpoint (e.g. fetal body weight) as the dependent, or pre-
dicted variable, and relevant toxicological study design variables
(e.g. control group response, litter size, sex) and the test material
variables (e.g. the weight percent of each of the 1-7-ring ARC,
the “ARC profile”) as the independent, or predicting, variables.

4.2. Choice of dependent variables

The dependent variable and number of dose groups used to de-
velop the model for a specific endpoint are shown in Table 2. For
each of the endpoints selected for final modeling, the dependent
variables were the responses of a dosed group (dose > 0), while
the control group response was used as an independent variable
(covariate).

For the repeat-dose studies, the dose group response was the
mean response of all the animals in the dose group in a specific
study. For the developmental toxicity studies, the dose group re-
sponse was the unweighted mean of the means of all the litters
in a dose group in a specific study.

The modeled dependent variable was the observed response
rather than either the ratio of the dose group response to the con-
trol group response, or the ‘percent response relative to control’.
The use of a covariate (the control group response as an indepen-
dent variable) allowed more flexible modeling of the response
and, in most cases, resulted in a more stable estimate. If the models
were developed with percent response relative to control as the
dependent variable, the response would be the ratio of two random
variables. The ratio of dose group to control responses can vary
widely, especially when the control group value is likely to be
small. For example, when measuring the number of resorptions a
seemingly small change of the numerical value in the denominator
can result in a large change in the ratio (i.e., if the number of con-
trol group resorptions decreases from 2 to 1 in a litter the percent
of resorptions relative to control will double). All models were
developed using both the covariate method and, as an alternative,
the percent response relative to control. The covariate models were
more stable and had regression fit diagnostics at least as good as
the percent response relative to control models. If needed, the
model-predicted responses from the covariate models can be con-
verted to percent response relative to control predictions by divid-
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Table 3

ARC profiles of 2 petroleum samples with similar total PAC content.
CAS RN Sample No. ARC-1 ARC-2 ARC-3 ARC-4 ARC-5 ARC-6 ARC-7% Total
64741-59-9 8281 2.0 29.5 14.7 0.0 0.5 0.5 0.0 47.2
64741-62-4 86001 0.0 2.6 25.7 193 6.4 3.2 0.6 57.8

2 The ARC 7 value is the weight percent of the 7 and >7 ring aromatic compounds within the petroleum substance as determined by the Method II chemical characterization

procedure.

ing the predicted value by the control group response; we have not
presented these converted models because we do not want to add
more models to an already complex discussion. Note that the ratio
discussed here is the ratio of a dose group response to a control
group response, and is different from the ratio of liver weight to
body weight (relative liver weight). The latter is the ratio of two
different measures from the same animal while the former is not.
The argument against the ratio of responses would apply to the ra-
tio of dose group relative liver weights to control relative liver
weights.

4.3. Choice of independent variables

4.3.1. Analytical variables (PAC measures)

The number of HBPS is large, with each containing at least thou-
sands of structurally-related individual substances (Altgelt and
Boduszynski, 1994; Gray et al., 2013; Potter and Simmons, 1998;
Speight, 2007), including a wide variety of polycyclic aromatic
compounds (PACs). The specific chemical composition of each
sample of these HBPS is affected by both the source of the crude
oil and the processing conditions used to create the substance
(Speight, 2007). In addition, the composition of HBPS can vary sub-
stantially, even among substances with the same CAS RN (Gray
et al., 2013). Fortunately, as will be shown, the models accurately
predict the developmental and repeat-dose toxicity of these sub-
stances based on ARC profile and independent of the CAS RN.

The PAC content of the test samples in the individual studies
had been determined using a variety of analytical techniques. As
described in more detail elsewhere (Patterson et al., 2013; Simpson
et al.,, 2007, 2008), there were four analytical methods with suffi-
ciently large sets of samples to provide a basis for comparison.
The four methods determined either the concentrations of aro-
matic compounds of ring classes 1-5 (noted as Method I), or
extractable ring classes aromatic compounds of ring classes 1-7
ring and larger (Method II), or S-PACs from the Method I method,
or N-PAC concentrations. The S-PACs are unalkylated and alkylated
PACs in which the heteroatom is sulfur. These include the thio-
phenes and their benzologues (with additional aromatic rings
fused to the thiophene structure). Dibenzothiophene is an example
of an S-PAC. N-PACs are unalkylated and alkylated PACs in which
the heteroatom is nitrogen. These are the pyrrolic (five-membered
ring aromatic) and pyridinic (six-membered ring aromatic) struc-
tures and their benzologues. Benz[a]acridine is an example of a ba-
sic N-PAC.

Preliminary modeling with these four PAC measures clearly
indicated that the models developed using the Method II data gen-
erally had better fit characteristics than those using the Method |
measures and in many cases much better fit than the other two
PAC measures. Furthermore, there were more toxicity studies
available with corresponding Method II data on the test sample.
Details can be found in the reports previously referred to (Patter-
son et al., 2013; Simpson et al., 2007, 2008). Because of the better
model fit and the larger sets of available data the Method II data set
was selected for use in the final model building.

The extractable concentrations of each of the 7 ring classes (the
ARC profile) were used in the models. Using the Method II data we
tested models using a reduced set of rings, or weighted averages of

the 7 ring classes based on factor analyses, or other variable reduc-
tion techniques. None of these alternative models performed better
than those based on the 7 individual ring-class concentrations, so
the extractable concentrations of each of the 7 ring classes (the
ARC profile) were used in the final models.

4.3.2. Individual ARC terms

It is not sufficient to consider the total percent weight of the 1-
7 and larger aromatic-ring compounds because the total percent
weight by itself does not adequately predict a description of the
dose response of the petroleum substance, whereas consideration
of the individual ring class concentrations (the ARC profile) pre-
dicts a sufficiently accurate dose response curve. For example, con-
sider the ARC profile of two petroleum samples (Table 3) that have
similar total PAC content (47.2 and 57.8) but different ARC profiles.
The sample number refers to an internal sample number assigned
to the data sets used in the development of the models.

The ratios of observed mean fetal body weight to the control
mean fetal body weight for the two samples from Table 3 are plot-
ted in Fig. 1. The fact that both materials have similar total PAC
contents might lead to the expectation that they would have sim-
ilar biological activity. However, there is a large difference in the
observed biological responses of the samples. In contrast, the final
statistical model predictions for these two samples closely agree
with the observed data (Table 4) indicating the usefulness of the
models when based on the ARC profiles. We used the ratio of the
treated to control group body weights to simplify the interpreta-
tion of this point. The modeling efforts use only the treated group
weights as the dependent variable.

4.3.3. Toxicity study design variables

A set of independent variables related to study design was in-
cluded in each model. For the repeat-dose studies, the set included
variables such as:

L ]| ]
95

920
85

80

Mean Fetal BW Ratio (%)

75

70

65 |
0 100 200 300 400 500 600

Applied Dose (mg/kg)
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Fig. 1. Observed mean fetal body weight ratio vs. applied dose for two substances
with total PAC extract weights of 47 and 58 percent.



M,J. Nicolich et al./Regulatory Toxicology and Pharmacology 67 (2013) S10-S29 S15
Table 4
Observed and predicted mean fetal body weight (FBW) ratios based on the ARC profiles for two petroleum samples with similar total PAC content.
CAS RN Sample No. Dose or FBW ratio
64741-59-9 8281 Dose (mg/kgpw/day) 0 25 50 125 250 500
Observed FBW Ratio 100 97 97 100 97 91
Predicted FBW Ratio 100 100 99 98 96 92
64741-62-4 86001 Dose (mg/kgpy/day) 0 8 30
Observed FBW Ratio 100 91 83
Predicted FBW Ratio 100 94 79

(1) dose level normalized to milligrams of applied substance per
kilogram of animal body weight per day (mg/kgpw/day),

(2) duration of dosing, and,

(3) sex of the treated animals.

For the Type I developmental toxicity studies, the independent
variables were selected from:

(1) dose level normalized to milligrams of applied substance per
kilogram of animal body weight per day (mg/kgy./day),

(2) number of implantation sites,

(3) number of animals, or pregnant dams, or litters per dose
group, and

(4) body weight.

Each model also included the control group response as an inde-
pendent term, or covariate, in the model. Not all variables were eli-
gible, available, or appropriate for all models; however, terms for
dose level and control group response were always included in
the model building process. All responses were means calculated
in a similar manner to that described above.

4.4. Models

As previously noted, the model for each of the endpoints was
developed independently. The basic model form was a general lin-
ear regression model with the dose group response as the depen-
dent variable, the control group response as an independent
variable (covariate), and a selection of independent variables as de-
scribed above.

The model building process was, by definition, an iterative pro-
cess in which model forms were postulated and tested with vari-
ous diagnostics. Based on the results of the diagnostics and an
understanding of biology and toxicology, a model was then altered
by adding or removing terms and/or transforming terms, or in
some cases trying nonlinear model forms when these seemed
justified.

The transformations included the standard set of logarithm,
exponent, trigonometric, power, and probit transformations. The
diagnostics included residual plots, and a statistical evaluation of
the magnitude and effect of influence points (Belsely et al.,
1980). The influence points are data points that have a statistically
large effect on the estimated coefficients and statistical signifi-
cance of the coefficients. The residuals were tested for a normal
distribution at the 0.01 significance level by the Shapiro-Wilk test
(Shapiro and Wilk, 1965). Plots of the observed and predicted val-
ues from a model were developed to evaluate the adequacy of the
model and to look for outliers and other possible anomalies, see
Fig. 2 for an example of such a plot.

The final comparison among competing models for an individ-
ual endpoint was based on the overall model multiple correlation
coefficient (r) and the error mean square (EMS). These measures
were selected because, among their other characteristics, the r va-
lue is a measure of the closeness of the observed and model pre-
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Fig. 2. Observed vs. model predicted data points for the fetal body weight model.

dicted values, while the EMS is related to the width of the
confidence interval of the predicted value. During the model build-
ing process, we did not adhere strictly to the optimization of the
correlation and standard error, but considered the overall reason-
ableness of the model, concentrating more on the fit of the model
near the critical region where an increase in dose was associated
with a biologically important change in response (rather than near
the no effect region or a region of extreme response), but not
allowing a few outliers to drive the form of the model. In general,
the goal was to develop a model that was both a good descriptor
and one in which greater confidence could be placed in its
predictions.

Using the criteria described above, the results of the various
model forms indicated that linear models (models where the inde-
pendent, or explanatory, variables are additive) provided a good
description of the observed data and non-linear models did not im-
prove the fit of the model to the data. The testing also indicated
that the most stable models were based on predicting the dose
group response directly (not as a ratio to the control group), with
the control group response as an independent variable. The pre-
dicted ratio could be developed from the predicted direct dose
group response by dividing by the control group response.

During model evaluation, as described above, models were
developed based on both linear regression using ordinary least
squares (OLS) methods (Draper and Smith, 1998) and mixed-ef-
fects models (Pinheiro and Bates, 2002 ) using maximum likelihood
(ML) methods. The OLS methods assume all observations are inde-
pendent. However, in our data, the assumption of independence
may not be achieved because there are usually from two to six dose
group data points from a particular study (and the toxicological
studies themselves may have had some commonality). The
assumption of independence is important for assessing signifi-
cance levels of terms in the model, but has little effect on the esti-
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Table 5
Comparison of model fitting characteristics for OLS and mixed model analyses.
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Study type Dependent variable n Studies n Data points OoLS Mixed effects model
r se r se
Repeat—dose toxicity Thymus weight (absolute) 16 84 091 0.03 0.94 0.03
Platelet count 16 85 0.91 0.12 0.95 0.09
Hemoglobin concentration 18 98 0.94 0.60 0.94 0.56
Liver weight (relative?) 17 90 0.94 0.19 0.97 0.15
Developmental Type 1 toxicity Fetal body weight 21 61 0.94 0.11 0.98 0.07
Live fetuses/litter 21 60 0.98 0.90 0.99 0.80
Percent resorptions 21 60 0.99 0.24 0.99 0.23
Corroboration Maternal thymus weight (absolute)® 10 29 0.92 0.03 0.98 0.02

¢ Relative to terminal body weight.

b Maternal thymus weights were utilized as an alternate data source when the models were tested (see Section 5).

mated coefficients. The mixed-effects models account for the rela-
tionships of dose groups within a study, and are theoretically pref-
erable in the current situation.®

The OLS method is widely known among researchers, and soft-
ware for expanding and applying the models is readily available.
The mixed effect models are slightly more difficult to use and
accounting for within group variances in predictions may be diffi-
cult. We considered both models and found that, as expected, the
models based on the two methods had similar forms, and coeffi-
cients, but the variance estimates for the mixed-models were
smaller than for the OLS models. The difference in the overall var-
iance estimates between the two will depend on the degree of dif-
ference between the petroleum substance study group means and
the within petroleum substance study group variances.

We assessed the efficacy of the OLS and mixed effect models by
considering the model correlation (r) and residual standard error
(se). While it is known that the mixed effect models are not opti-
mized for the correlation and minimum standard error, as are
the OLS methods, they do provide a reasonable method of compar-
ison. Table 5 shows the correlation (r) and residual standard error
(se) for the optimum models from the two estimation methods.

The equivalence of the fits of the models from the two methods
can be seen in the similarity of the correlations (r), while the
slightly smaller errors of predictions with the mixed models can
be seen in the smaller “se” values. Given the small differences be-
tween models from the two methods, the simplicity of the OLS
methods is preferred over the mixed-effects models.

The individual data points used in the models are means of indi-
vidual dose groups from the repeat-dose studies and the means of
mean litter responses of individual dose groups from developmen-
tal toxicity studies. Within a data set used for a specific model the
number of studies averaged into a data point may vary. This vari-
ation in underlying sample size can engender a different variance
for different data points. Unfortunately, this violates one of the
assumptions of OLS and ML model building. However, because of
the requirements specified in the initial data collection, the varia-
tion amongst studies is small and the resulting differences in var-
iation will have little effect on the final variance of the estimator
and the significance level of individual terms in the model. Since
the goal is to develop a model form and not to test hypotheses
or develop strict confidence limits on predictions, neither of these
potential problems presents serious difficulties.

The initial model building included a categorical (nominal) term
that described the Petroleum HPV Testing Group’s (PHPVTG) cate-
gory of the test sample (e.g. aromatic extracts, crude oil, etc.). This
term was statistically significant in almost all the models. Because

8 The results for the mixed effects models are very similar to the results from the
current OLS models. Readers interested in the specific results are referred to the API
PAC Analysis Task Group Report (Simpson et al., 2008), or contact the corresponding
author.

this measure is not a physical property of the sample but a descrip-
tor and the goal was to develop terms that were measurable prop-
erties, logistic regression and discriminant function techniques
were used to develop an alternative term that is similar to the cat-
egory term but based on the chemical composition properties. The
analyses indicated that a collection of terms involving the individ-
ual ARC concentrations and the interaction of ARC ring 4 with ARC
ring 5 was a good predictor of the HPV category. Therefore, the
interaction term was considered when building the models.

In summary, the models were developed independently for
each endpoint considering the biology, toxicology, and statistical
aspects of the available data. The models were developed to be
as simple as possible, but still adequately describing the data. A
model that fit the data well in the critical region, that is the region
where the response changes from normal to abnormal, was pre-
ferred to one that fit well at the extremes. After all the models were
independently developed, some alteration was made to have the
models similar in their algebraic form while not sacrificing the
integrity of the individual models. The amount of alteration was
fairly small, which is an indication of the statistical consistency
of the modeling process, but is not meant to indicate anything
about the underlying biological mechanism. The terms for the indi-
vidual ARC terms were kept for all models to avoid the problem of
fitting each model to a specific data set and not have it generaliz-
able to new data, and to minimize the tendency to inspect individ-
ual ARC terms for hints of the biological mechanism.

The models met the objective of characterizing the relationship
between PAC content and SIDS endpoints as seen in the correlation
between the observed and predicted data (a mean r of 0.94 and
minimum r of 0.91).

The correlation and standard error (r and se) values in Table 5
are for the final OLS models that are based on the observed re-
sponse, not the ratio of the response of the dosed group to control
group.

The magnitudes of the correlations in Table 5 are large for this
type of data; the minimum correlation is 0.91. Some plausible
explanations for the large correlations are as follows:

(1) Each data point is a group mean response often with at least
10 observations in the group. This reduces the variability of
each point, and increases the correlation.

(2) A priori selection criteria for the data points resulted in a
somewhat homogeneous data set that also reduced the
variability.

(3) Models were selected to maximize the correlation.

4.5. Model equations

The models for the seven endpoints considered and the corrob-
oration model are linear in the coefficients and of a similar form.
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The forms of the models are described in Table 6; coefficients for
the final fitted models are available in the on-line supplement.

4.6. Model fit

The accuracy of the fits of the selected models can best be seen
in a plot of observed data points versus the predicted data points.
In this type of plot, an individual data point would represent what
is observed for a single dose group of an experiment and what is
predicted from the statistical model. The optimum would have
all points along the 45 degree line, meaning all predicted values
equal the corresponding observed value. Fig. 2 is such a plot for fe-
tal body weight, and it shows the observed and predicted points
are in very good agreement across the range of data. Plots for the
four repeat-dose models are found in Roth et al. (2013) and plots
for the three the developmental toxicity models are found in Mur-
ray et al. (2013). All seven models show very good agreement be-
tween the observed and predicted data points, similar to the
results seen in the fetal body weight model (Fig. 2).

Table 6
Forms of the models.

5. Model testing and corroboration

The selected models were rigorously tested to ensure that the
model results and corresponding correlations were not spurious
because of over fitting or applicable only in a unique data region.

5.1. Interpolation and extrapolation

The concepts of interpolation and extrapolation are critical
when using a statistical model to predict a new response data point
from a new set of independent variables. The predicted data point
is called an interpolated data point if the predicted data point is
based on independent variables that are each within the range of
the corresponding independent variables of the set of substances
used to develop the model. Conversely, the new predicted data
point is called an extrapolated data point if at least one of the inde-
pendent variables is outside the range of the independent variables
used to develop the model. We have more confidence in the
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7 S
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;
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expected accuracy and precision of interpolated predictions
because they are in the range of experience and we have met the
statistical assumptions for the models. We do not have the same
confidence in the extrapolated predictions because they are based
on data outside of our experience of the model and we do not know
how the model will respond.

For the models we are discussing there are three classes of inde-
pendent variables: the seven ARC values, the applied dose, and the
biological based variables such as the control group value or study
duration. When using the models to predict responses for a new
material the choice of ARC values and dose are the variables that
could lead to extrapolated predictions. The biological variables
are likely to be specified based on the same biological variables
as were used to develop the models, and would not lead to extrap-
olated predictions in that region.

It is easy to understand how to choose a dose that will not lead
to an extrapolated prediction: it only has to be within the range of
doses used to develop the specific model being used. Similarly, for
the single measure variables such as the control response, the body
weight, or the study duration, it only has to be within the range of
values used to develop the model being used. It is more difficult to
understand interpolation and extrapolation for the ARC profile. Ta-
ble 7 shows the ARC profiles for three hypothetical petroleum
substances.

We can plot (Fig. 3) the ARC Profiles of the three hypothetical
petroleum substances shown in Table 7 as a spider, or radar, plot.
In the plot each substance is represented by a ring with the seven
values plotted on the seven legs or rays.

Assume the ARC Profile of Substance A was used to develop a
statistical model. The ARC Profile of Substance B is interpolated rel-
ative to that of Substance A because all the seven ring concentra-
tions for Substance B are within the ARC values of Substance A.
The Substance B biological value predicted from the model would
be considered an interpolated predicted data point. In contrast, the
ARC Profile of Substance C has a Ring 2 concentration that is great-
er than that of the original substance, Substance A. The Substance C
biological value predicted from the model would be considered an
extrapolated predicted data point. The concept of interpolation also
requires that the new substance not only be within a substance
used to develop the model but it must be outside a substance used
to develop the model - it must be between two substances. Each of
the models that were developed included a substance with the va-
lue zero for the seven ARC values, therefore when using these mod-
els only the ‘outer’ values need to be considered.

5.2. Model testing

An important component of model building is to test, or corrob-
orate, the model’s predictive ability. This testing is necessary to
demonstrate the utility of the models. Each of the models that
were developed in this project was tested in four ways:

(1) using holdout sample data,
(2) using ‘nonsense’ data,

(3) using new data, and

(4) sensitivity analyses.

Table 7
ARC Profiles of Three Hypothetical Petroleum Substances.

Substance ARC-1 ARC-2 ARC-3 ARC-4 ARC-5 ARC-6 ARC-7°
A 7 5 15 8 8 6 9
B 5 5 12 3 5 2 7
C 5 13 12 3 5 2 7

2 The ARC 7 value is the weight percent of the 7 and >7 ring aromatic compounds
within the petroleum substance as determined by the Method II chemical charac-
terization procedure.

Fig. 3. Spider plot of the three ARC profiles.

5.2.1. Using holdout sample data

A standard method of testing a statistical model is to develop
the model on a subset of the available data, and then apply the
model to the data not used to develop the model. This process is
called holdout sample corroboration or data-splitting corrobora-
tion (Harrell, 2001). The data used to develop the model is called
the training data, the remaining data is the test or holdout data.

To demonstrate the model accuracy, the data-splitting tech-
nique was expanded by having the method replicated 100 times;
each replication used a different set of training and holdout data
selected from the full data set. Consider absolute thymus weights
from the repeat-dose studies. In the base data set used for the anal-
ysis there were 84 observations for the repeat-dose thymus
weight. For each replication, approximately 70% of the data points
were selected to build the model (training data), and the remain-
ing, approximately 30%, were used as test data (holdout data).
The percentages are approximate because the selection process
chooses each point with probability 70% rather than choosing
70% of the sample. In each of the 100 replicates, the specific data
points in the 70% and 30% groups were different.

The results from the 100 replications using the 84 data points
(for a total of 8400 data points) are shown in the observed vs. pre-
dicted plots in Fig. 4a and b. Fig. 4a shows the model observed and
predicted data for the training data (n = 5857), while Fig. 4b shows
the plot of the model observed and predicted data for the holdout
data (n = 2543).

As can be seen in Fig. 4b, some of the predicted data points in
the holdout data set are “unreasonable” in that they are not close
to the observed data point, as shown by their distance from the 45-
degree line of equal values. Moreover, more data points exist out-
side the plotting boundaries, so the results are actually more ex-
treme than shown {13 observations in the range (0.40, 0.61] and
100 observations in the range [-1.97, —0.10)}. However, some of
the holdout data predicted values are interpolated points
(n=2331) and some are extrapolated data points (n=212); the
points are not identified as interpolated or extrapolated in these
plots because of the large number of data points. If the interpolated
and extrapolated holdout data points are plotted separately (Fig. 5a
and b), the “unreasonable” data points can be seen to be the
extrapolated data points, whereas the interpolated data points pro-
vide reasonable and accurate predictions.

These plots demonstrate that the predictions from the model
for the original data set (‘training data’ in Fig. 4a) and for the inter-
polated holdout data (Fig. 5a) are good in that the predicted values
are close to the observed values. However, model predictions for
the extrapolated holdout data (Fig. 5b) are mixed, sometimes good
and sometimes inaccurate. Note that in Fig. 5a all the interpolated
data points are plotted, but in Fig. 5b there are still some extrapo-
lated data points outside the plotting boundaries.
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Fig. 4a. Training sample: observed and predicted points of all absolute thymus weight data from repeat-dose studies.
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Fig. 4b. Holdout sample: observed and predicted points of all absolute thymus weight data from repeat-dose studies.

5.2.2. Using ‘nonsense’ data sitional data expressed as an ARC profile) that were not associated
A model’s usefulness can be tested by determining model per- with the outcome or observed effect (Prajna, 2003). For example, if
formance using values for the independent variables (PAC compo- developing a model using rodent food consumption to predict body
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Data=Interpolated Hold Out Data
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Fig. 5a. Holdout sample: observed and predicted points of the interpolated absolute thymus weight data from repeat-dose studies.

Data=Extrapolated Hold Out Data
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Fig. 5b. Holdout sample: observed and predicted points of the extrapolated absolute thymus weight data from repeat-dose studies.

weight, one could test the model by substituting the cage number sumption with animal B’s weight gain, which is analogous to what
in place of food consumption; or, associate animal A’s food con- was done to test the current models.
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If a model does not fit well using this “nonsense data” (i.e., pro-
duces relatively low r values), it is a clear indication that the model
behavior is based on information in the data, and is not a result of
chance. For example, in the original hemoglobin concentration
model there were 98 data points with an r value of 0.94. The re-
sponse data (hemoglobin concentration) and the corresponding
values of the independent variables (ARC Profile) were randomly
shuffled and a new model was fit. The process was repeated 100
times. The resulting models had a mean r = 0.44, with a minimum
and maximum of 0.37 and 0.61, respectively. However, because the
model incorporates the control group hemoglobin concentration
value, part of the moderately large r (0.44) from the shuffled data
is based on the relation between the control and dosed hemoglobin
concentration in the ANCOVA model. Without the control group,
the r value for the real data was 0.86 (lower than the 0.94 correla-
tion developed with the ANOVA model) and for the 100 shuffled
data runs the mean r value was 0.15 (minimum 0.06 and maxi-
mum 0.37). This is an indication that the model did not fit random
data as well as it fit the real data. A similar series of shuffles was
done, but the randomization was restricted to sets within the same
petroleum category as the test substance and sex of the respon-
dent. These shuffles selected from a smaller group of possible
matches and resulted in some matches that were the same as
the original ordering, so the resulting correlations should have
been higher than the fully random shuffles, but less than the ob-
served correction. For these restricted shuffles the mean and range
of 100 replicates was 0.45 with a minimum and maximum of 0.39
and 0.57, respectively.

These results from the nonsense method of testing, while seem-
ingly good, are still far from the observed r value of 0.94. These rel-
atively low r values from the nonsense data are a clear indication
that the model behavior is based on information in the data, and
does not result from chance.

5.2.3. Using new data

The corroborative ability of a model can be determined by how
well the model predicts results from a study that was not used in
the development of the model. There are two types of data that are
available for corroboration: direct corroboration and indirect cor-
roboration. There are two studies that are available and can be
used for a direct corroboration of the models. In addition, there
are two data sets that can be used for indirect corroboration: (1)
corroboration of the repeat-dose maternal thymus weight model
using the developmental toxicity study maternal thymus weight
data as a proxy and (2) corroboration of the developmental toxicity
live fetuses/liter model using the number of pups delivered data
from a Type II study.

5.2.3.1. Direct corroboration. Two samples that were not used to de-
velop the ARC models were recently tested in standard rat develop-
mental and repeat-dose toxicity studies that meet the ARC model
requirements. The sample profiles are interpolations, and the sam-
ples final boiling point > approximately 650 °F (343 °C). Sample

Table 8
Correlations between observed and predicted data.

20906 is a light paraffinic distillate aromatic extract and sample
120801 is an ultra-low sulfur diesel oil.

In these studies, the maximum dose was 150 mg/kgy/day for
the repeat-dose study with 4 groups including the vehicle control,
and the maximum dose was 450 mg/kgy./day for the developmen-
tal toxicity studies with 5 groups including the vehicle control (the
sham control groups from these studies were not included). In both
the repeat-dose and developmental toxicity studies, the light par-
affinic distillate aromatic extract (sample 20906) produced statis-
tically significant changes from control for at least 1 dose group
for all endpoints except platelet count in males. In contrast, the ul-
tra-low sulfur diesel fuel (sample 120801) did not cause a statisti-
cally significant effect on any of the parameters from the studies
(maximum dose 600 mg/kgy,/day) with 4 groups including vehicle
control but not sham control for both studies.

To mimic making predictions for new samples, we used the ARC
profile for each sample and the mean biological parameters from
the studies used to develop the model (rather than the biological
parameters from the new studies) and calculated the predicted
endpoints for these 2 studies. Table 8 presents the correlations be-
tween the observed and model predicted values. The correlations
are a reasonable description of the results, even though they are
based on only 4 or 5 observations.

For the four repeat-dose endpoints for both sexes the model
predictions for sample 20906 were very good, ranging from 0.76
to 1.00 with a median value of 0.96. There was not a dose response
for sample 120801 for three of the four endpoints. The model pre-
dicted dose-response curves for sample 120801 were essentially
flat (equal response at all doses) except for platelet count where,
for each sex, the model predicted a modest decrease in count: a
slope of approximately 2.5 units per mg/kgy,,/day, where 2.5 units
is about 0.25% of the control value. As expected, the correlations
between the randomly scattered observed values and the flat, or al-
most flat, predicted values varied from —0.90 to 0.82.

The fetal body weight predictions for sample 20906 yielded a
high correlation, but the predicted dose response pattern was shal-
lower than the observed data. For both samples the predicted mod-
el responses for live fetus count and percent resorptions were
unusable because the predicted results were the reverse of what
was expected based on the results of the other developmental tox-
icity studies of HBPS reviewed for this paper (increasing number of
live fetuses per litter and decreasing percent resorptions with
increasing dose). The fetal body weight predictions for sample
120801 were also reversed (increasing fetal body weight with
increasing dose) but with a shallow slope.

These sample predictions for the developmental toxicity models
for these two samples are not adequate. While a positive outcome
is that they did not predict false negatives; they did not provide
any estimates. The following is an explanation of why the develop-
mental toxicity models at this point in their development were not
adequate for these two samples but will be accurate for other sam-
ples, although not necessarily all other samples.

Both of the new test materials (samples 20906 and 120801) had
ARC profiles that are interpolations. The assumption was that if a

Study Sex Thymus weight Platelet Hemoglobin Liver weight Fetal body Live fetuses/ Percent
(absolute) count concentration (relative?) weight litter resorptions
20906 M 0.99 0.76 1.00 0.97 0.98 X X
F 0.96 0.88 0.96 0.98
120801 M 0.45 0.82 0.72 —-0.90 X X X
F —0.06 -0.31 0.60 —0.46

X - model prediction unreliable.
@ Relative to terminal body weight.
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profile is an interpolation the model prediction would be accurate
because the profile was surrounded by the profiles of samples used
to develop the models. This assumption tacitly assumed the rela-
tions were linear, like the points on a line, and if a test number
was greater than specific number and less than a third specific
number the test number was “between” the other two values.
However for the ARC models, the relations were not quite linear
because there were 7 ARC values in the profile, and the space did
not behave exactly as a straight line; they were more like a bent
sheet of paper so that the concept of between was not easy to
define.

The ARC 6 values for the two new materials were low (0.3 and
0.0 for sample 20906 and sample 12080, respectively). The samples
used to develop the developmental toxicity models and that were
the basis of the outer interpolation characteristic, have ARC 6 val-
ues that were larger than those of the new samples (0.5, 3.2, 4.9,
and 6.0). Consequently, we hypothesized that the current develop-
mental models did not predict the new data well when the ARC 6
value was low because the model had no experience in this region.
As a demonstration of this idea, if the ARC value for either sample
was numerically increased to 1.0 then the resulting live fetuses/lit-
ter and percent resorptions models would have had the predictions
in the expected direction as the dose increases. This does not imply
any mechanistic or biological importance to the ARC 6
concentrations.

The corroboration samples for the developmental toxicity mod-
els may not have provided useable results because the ARC profiles
were in an area that was poorly represented by the samples used to
develop the models. At a later time, when the models are updated
with these, and other, samples we expect the results for these sam-
ples will improve. The empirical findings with these samples were
predicted well by three of the four repeat-dose models. However,
the current live fetuses/litter and percent resorptions models are
not yet adequate to predict the developmental toxicity of all HBPS
because of the limited number of ARC profile sample patterns of
the materials used to develop these models. When additional data
are available to fill out the domain of the ARC profiles of these
models the problem of reverse predictions are expected to be ame-
liorated. These new models will likely have the same mathematical
form as in Table 6, but with different coefficients.

5.2.3.2. Indirect corroboration - repeat-dose model. Consider the
model for absolute thymus weight data from the repeat-dose stud-
ies. This model was applied to the developmental toxicity maternal
absolute thymus weight corroboration data. If the repeat-dose
absolute thymus weight model is adequate, the predictions of
maternal thymus weight should be as accurate as predictions from
the model developed for the developmental toxicity maternal thy-
mus weight corroboration data. That is, the repeat-dose thymus
weight model should work as well with the corroboration study
as it did on the data for which it was developed.

Fig. 6 shows the plot of observed vs. predicted data points from
the repeat-dose absolute thymus weight model applied to the re-
peat-dose absolute thymus weight data (the original data points
used to develop the model) and the points from the developmental
toxicity maternal absolute thymus weight study (the corroboration
data) that were predicted by the repeat-dose absolute thymus
weight model.

It can be seen from Fig. 6 that the repeat-dose model accurately
predicted the corroboration data.

While not part of the model building for this project, we devel-
oped a model for the maternal absolute thymus weight. The results
from applying the maternal absolute thymus weight model to the
repeat-dose absolute thymus weight data were not as accurate as
was seen from the reverse (the repeat-dose absolute thymus
weight model applied to the maternal absolute thymus weight
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Fig. 6. Observed and predicted absolute thymus weight data based on the model
developed from the repeat dose absolute thymus weight data applied to corrob-
oration and repeat-dose data.

data). Fig. 7 shows the plot of observed vs. predicted data points
from the corroboration maternal absolute thymus weight model
applied to the corroboration data (the original data points used
to develop the model) and the points from the repeat-dose abso-
lute thymus weight data. This figure also indicates which of the
predicted data points are interpolated and which are extrapolated.
It can be seen that all of the poorly fitting data points are extrapo-
lated, but that some of the extrapolated data points fit very well.
This is a demonstration that, while interpolated data points can
be reliable predictors, extrapolated data points may or may not
be accurate.

Table 9 shows the prediction results for the repeat-dose and
corroboration absolute thymus weight models used to predict
alternate data with all alternate data points and with only the
interpolated or extrapolated points. The column labelled “r for base
model” is the correlation between the observed and predicted data
points based on the original model and the original data used to
develop it; the column labelled “r for all alternate data” is the cor-
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Fig. 7. Observed and predicted absolute thymus weight data based on the model
developed from the corroboration absolute thymus weight data applied to
corroboration and repeat-dose data with repeat dose data identified as interpolated
or extrapolated.
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Table 9
Model Correlations for Corroboration Analyses (Absolute Thymus Weight Models).

Model and alternate data set r For base r For all alternate r For new data - interpolated r For new data - extrapolated
model (n?) data (n?) predictions only (n?) predictions only (n?)
Repeat-dose data model predicting corroboration 0.91 (84) 0.73 (28) 0.72 (25) 0.51 (3)
study data
Corroboration maternal data model predicting 0.92 (29) -0.22 (84) 0.79 (38) —0.35 (46)

repeat-dose study data

2 Number of data points.

responding correlation for all the alternate test data using the ori-
ginal model. The last two columns subdivide the alternate data into
the extrapolated and interpolated data.

5.2.3.3. Indirect corroboration - developmental toxicity model. For
indirect corroboration of the Type I developmental toxicity studies
(uterine contents examined during a cesarean section just prior to
birth) we used data from the Type Il developmental toxicity studies
(litters allowed to be delivered naturally, and observations made
on the PND 0-4) that have an ARC profile. We expected a moderate
relationship between the number of pups delivered (Type II) and
the number of fetuses (Type I), or between the day 0 weight of
delivered pups (Type II) and the fetal weight (Type I).

The delivered pup count could not be greater than the fetal
count, but the delivered count would be negatively influenced by
any poor health of the dam and pups, or by any pup cannibalisation
that might occur. The day 0 pup weight would naturally be greater
than the fetal weight, but the pup weight would, like pup count, be
negatively influenced to a greater extent by any poor health of the
dam and pups. Because of recorded data limitations both the pup
count and pup weight were restricted to the live pups, the relation-
ship was further degraded.

While recognizing these limitations, we used Type II study data
to examine their ability to corroborate the fetal count and fetal
body weight Type I developmental toxicity models. There is no cor-
responding data set for the percent of resorptions.

There were 59 data points for the live pups per litter measure of
which 41 were from materials not used in the development of the
models. The predictions from the developmental toxicity model for
fetal count are plotted in Fig. 8, with the original fetal count data
used to build the model shown, and the live pup weight data points
identified as interpolations or extrapolations.
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Fig. 8. Observed and predicted live pup or fetal count data identified as interpo-
lated or extrapolated.

There were 53 data points for the live pups’ weight per litter
measure of which 38 were from materials not used in the develop-
ment of the models. The predictions from the developmental tox-
icity model for fetus weight are plotted in Fig. 9, with the
original fetal weight data used to build the model shown, and
the live pup weight data points identified as interpolations or
extrapolations.

The correlations between the observed and predicted data
points are shown in Table 10 and the column headings are inter-
preted as in Table 9.

The correlation among the observed and predicted data for the
interpolated fetal count model are reasonable (r = 0.48) consider-
ing the imposed limitations of using born live animals, the health
of the animals, and cannibalisations. The plot indicates that there
are more litters with a small fetal litter size compared to the sizes
of the delivered pups; the narrower range for the live pups contrib-
utes to the low correlation. The correlation for the interpolated fe-
tal weight data is low (r = 0.37), but the limitations from the count
measure apply and in a more severe manner.

5.2.4. Sensitivity analyses
There are 3 major classes of sensitivity analyses (Saltelli et al.,
2000):

(1) screening — determine which factors are important;

(2) local - determine model behavior for individual changes in
input values or parameter estimates, usually one-at-a-time
over a small range; and,

(3) global - determine model behavior for changes in all inputs
and parameters using a distribution of input values.

The local methods were not used in our analysis because they
examine variables one-at-a-time and are not adequate for complex
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Fig. 9. Observed and predicted live pup or fetal weight data identified as

interpolated or extrapolated.
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Table 10
Model Correlations for Corroboration Analyses.

Model and alternate data set r For base r For all alternate r For new data - interpolated r For new data - extrapolated
model (n%) data (?) predictions only (%) predictions only (%)

Fetal count model predicting live pup counts 0.98 (59) 0.11 (44) 0.48 (11) 0.08 (33)

Fetal weight model predicting live pup weight 0.94 (60) 0.33 (38) 0.37 (11) 0.35 (27)

4 Number of data points.

models with many variables and with interactions among the
variables.

5.2.4.1. Screening analyses. The screening analyses question in-
volves the terms in the model and how they are related to the in-
put data. For the screening analyses step, a set of data was
simulated using a Monte-Carlo type simulation. A data set of sev-
eral tens of thousands of observations was simulated with data
for the ARC Profile values, the control values, and the biological
parameters (e.g. body weight, sex, etc.).

The data were checked to allow only interpolated data. Each of
the seven ARC ring values was generated independently, within its
allowable range, but no checking was done to assure that there
were not too many high values (except that the sum could not
be greater than 100). There were between 39,000 and 40,000
observations that were eventually allowed in each simulation -

each of the models had different data sets. The simulated data were
classified into a low cumulative PAC set where each of the 7 indi-
vidual PAC ring value was less than the median value for corre-
sponding ring value in the data set used to develop the final
model, or a high cumulative PAC set where it was greater than
the median, or neither high or low.

A standard method of assessing the importance of a term in the
model is to look at the correlation between the value of the term
and the predicted value. If the correlation is high (either positive
or negative) that means that term is important in the prediction,
and conversely, if the correlation is low, the term is not important
in the prediction.

For the repeat-dose platelet count model (n=39,213), the cor-
relations (non-parametric) are displayed in a ‘tornado’ diagram
(Fig. 10a) — a bar graph that shows the size and direction of the cor-
relation for all the independent variables. The shadings in the tor-
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Fig. 10. Tornado diagram (a) repeat-dose platelet count and (b) repeat-dose liver-to-body weight ratio.
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Fig. 11. Repeat-dose platelet count model tornado diagram, total, high and low cumulative ARC values.

nado diagram are used to distinguish the response among the vari-
ables. The pattern for the repeat-dose liver-to-body weight ratio
model (n=36,896) is shown in Fig. 10b.

For these two models the strongest influence is dose, and
the least important is the ARC 1 for the platelet count model
and the ARC 2 concentration for the repeat-dose liver to body
weight model. If the models are effective then it is expected
that dose would have the strongest influence on the response,
and that is the case. As expected as dose increases the platelet
count decreases (correlation is negative) and as dose increases
the liver to body weight ratio increases (correlation is positive).
For platelet count the concentrations of ARC 4 and 2 have the
largest influence among the concentrations, for the liver to body
weight model it is the concentrations of ARC 5 and 7 that have
the largest influence among the concentrations. The covariates
such as the control value, study durations, and sex have less
influence.

However, these tornado diagrams show the influence of each
independent variable on the predicted response, but it is averaged
over the whole range of simulated data. Recall, the data were sim-
ulated in two parts, with high cumulative PAC values (sum of the
concentrations of all 7 rings) and low cumulative PAC values.

As seen in Fig. 11 for repeat-dose platelet count the important
variables (large correlations) change if low cumulative ARC or high
cumulative ARC values are considered. For example, with low
cumulative ARC values the influence of dose is very small, likely
because the slope of the dose response curve is relatively flat.
There is a similar pattern for the ARC 2 concentrations, but not
for the other variables. The “sensitivity” of the variable depends
on the range of the data used in the simulation. Tornado diagrams
for other models, not presented here, show various patterns indi-
cating the different responses for different endpoints.

5.2.4.2. Global analyses. The screening analyses examined the sensi-
tivity of the model to individual data points used in model building
and determined which individual points were considered to be
“influential” in determining model coefficients. The global analyses
explored the sensitivity of the model response to the individual
terms in the model when varying simulated input data were used.

The method used for the global analyses was to determine
which data points had a strong influence on the estimated model
coefficients. The ‘strong influence’ was based on three well-known
summary statistics of individual data points used in building the
model (Belsely et al., 1980):

(1) hi, or the leverage statistic, is a measure of how unusual the
values of the particular independent variable are (is the
point an ‘outlier’ with respect to the independent
variables?),

(2) DFFITSi measures how much the predicted value of the ith
observation would change if the ith observation was not in
the model (it measures influence of the ith observation), and

(3) Studentized residuali is a measure of how far the model pre-
dicted value is from the observed value (is the prediction
poor for this data point?).

We first determined which observations from the four repeat-
dose models had at least one ‘strong influence’ statistic in at least
three models: this process determined 18 data points. A similar
process with the three developmental toxicity models determined
12 data points that met the criteria.

Using these “influential” data points, we determined if the mod-
el results were substantially altered when these observations were
removed. If the model results were not changed when the points
were removed, then the model was insensitive to the data points
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Fig. 12. Developmental toxicity live fetus count model (a) indication of influence
points (b) comparison of predicted points from model with and without influence
points.

that met the above criteria - if the model was insensitive then we
can conclude the model was stable.

For example, Fig. 12a is a plot of the observed and model pre-
dicted values for the developmental toxicity live fetus count model
that fit with all values, highlighting the 10 influence points to see
where they are (note there are only 10 of the 12 influence points
included in the developmental toxicity live fetus count data).
Fig. 12b shows how the model fits using data without influence
points by plotting the predicted value using the model with the
influence points against the predicted value using the model with-
out the influence points. From the two plots, it can be seen that the
influence points apparently do not drastically alter the model or
model fit and the model is stable. The plots for the other six models
not presented here, show similar results.

6. Model comparisons

This section will show that the seven mathematically-based
computational models are consistent with standard measures that
would be used to describe observed data from a series of repeat-
dose or developmental toxicity studies.

A common measure of relative toxicity from a standard toxicity
study is the BMD (Crump, 1984). BMDs can only be calculated for

samples that have existing toxicity data and therefore cannot be
used to characterize the dose-response of untested materials.
The BMD is defined as the dose that causes a defined change from
control value, e.g. the BMD;; is the estimated dose that would
cause a 10% change from control value. Essentially, the method
uses a set of data from a single, standard toxicology experiment
(usually 4 dose groups), fits a maximum likelihood estimation
regression model to the data to predict response from dose, then
uses an inverse regression estimate of the dose associated with a
fixed change to calculate the BMD. The regression model used is
usually the best fitting from among a standard set of available
models.

The models developed in this paper can be used to calculate the
predicted dose response (PDR). The PDR is the model-predicted
dose associated with a specified change from control group mean
for a particular multi-dose experiment; for example, the PDR;q rep-
resents the dose associated with a 10% change from control. The
PDR; is similar in concept to the BMD;, (Crump, 1984), but the
PDR is predicted and is calculated by fitting a model that is derived
from a series of toxicity studies covering a range of materials, in
contrast to the BMD that is generally limited to only one study.

The goal was to assess the degree of consistency between the
statistical model based estimate of relative toxicity (PDRyo) and
the standard measure of relative toxicity based on the observed
data (BMDg). The EPA has detailed a set of conditions for calculat-
ing a BMD;o and when a BMD;, can be calculated (Davis et al.,
2011), and there are specific conditions for the calculation and
interpretation of the PDR;o. When the BMD;, could not be calcu-
lated, we developed an alternate estimate based on either a simple
linear regression, or failing that, we developed an estimate based
on professional judgment; all three derived values were called
the Estimate;o and the preferred choice was in the order of the
BMD, linear regression, or judgment. Based on these sets of con-
ditions we developed an algorithm to determine if the estimated
PDR;( and Estimate;o were judged to be consistent for a particular
substance and the associated toxicity data. The conditions for
developing an estimate and the algorithm were designed to be
conservative, that is to minimize any bias in favor of an assessment
of consistency. A full explanation of the conditions and the algo-
rithm can be found in Roth et al. (2013), or Murray et al. (2013);
the former also provides detailed results for the repeat-dose mod-
els and the latter the detailed results for the developmental mod-
els. Basically, the measure of consistency is the relative percent
difference, defined as 100 times the absolute value of the differ-
ence in the two estimates divided by their average value. If the 2
values are A and B, then the relative percent difference is

A-B
100’(/4 ¥ B)/Z‘
where the vertical lines represent the absolute value. If one value is
3 times as large as the other, the relative percent difference is 100%.
We defined the PDR;q and the Estimate; to be consistent if the rel-
ative percent difference is less than 100%.

Of the 173 possible comparisons between PDR;q and Estimate;q
values derived for the samples that were used in building the re-
peat-dose and developmental toxicity models, 148 (86%) were as-
sessed to be consistent by the algorithm; (82% for the repeat-dose
measures and 96% for the developmental models Roth et al., 2013;
Murray et al., 2013).

A major application of these models is for screening new mate-
rials. As detailed in Simpson et al. (this issue), in the screening of a
sample material each endpoint will likely not be evaluated sepa-
rately, but the lowest PDR;o from among the endpoints estimated
for a sample material would be used. The lowest PDR;o would indi-
cate the lowest dose among all estimated endpoints associated
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with a 10% change. Among the 24 sample materials for which we
could develop sets of PDR;ps and Estiamtes;gs, we found only 1
sample where the lowest PDR;( value and the lowest Estimate;q
value was not consistent. The sample in question was 87213, with
a minimum PDR;o of 167 mg/kgpw/day and a minimum Estimateq
of 40 mg/kgyw/day, for a relative percent difference of 123%. This is
a reasonable comparison when considering this is the most ex-
treme difference when comparing the results of model predictions
to observed data for 24 HBPS.

Overall, when compared to an observed toxicity study data the
models had an 86% agreement or consistency rate for individual
predictions, and over a 95% agreement rate when considering a
toxicity characterization of a HBPS. The models did very well when
compared to standard measures from observed study data, espe-
cially when considering the known variability of rodent toxicity
studies (Haseman et al., 1989).

7. Discussion

The primary purpose of the present investigation was to deter-
mine whether there is a relationship between the PAC content of
HBPS and their repeat-dose and developmental toxicity endpoints.
A secondary objective of the current investigation was to deter-
mine whether an association, if it existed, could be used to predict
the toxicity of untested petroleum substances with similar physi-
cal and chemical properties.

We found that there are indeed associations between sensitive
repeat-dose and developmental toxicity endpoints and the PAC
content (expressed as the ARC profile) of selected petroleum sub-
stances. We have also demonstrated that numerical estimates of
these sensitive repeat-dose and developmental toxicity endpoints
can be predicted for an untested substance based on its ARC profile.

The statistical techniques used to develop the predictive models
presented in this report are much more robust than the techniques
used in the only previously published evaluation of the relation-
ship between PAC content and toxicity of petroleum substances
(Feuston et al., 1994). In comparison to the previous evaluation,
the current statistical technique makes use of a larger data set
and is based on observed numerical values as opposed to ranks.
The large number of data points used to develop the models is a
particular strength of the current evaluation. The plots of the ob-
served vs. predicted points for samples used to build and to corrob-
orate the models demonstrate that the models are both accurate
descriptors of the observed data and accurate predictors for inter-
polated substances. The models are relatively simple linear models,
all with a similar mathematical form across the endpoints, which
provides a measure of the concordance of the models.

To predict the toxicity of an untested substance using the mod-
els, the only compositional input that is required is the ARC profile
of the substance as determined by the Method II chemical charac-
terization procedure (see Gray et al., 2013 for details). Based on the
sensitivity analyses we can see that the model is not based on the
influence of only a few points; rather, it is stable, and adding more
data will likely improve the fit and the range of applicability. We
also can see that all the terms in the model are likely to be impor-
tant over some domain of the input data. The simulations show
how the degree of importance of an independent variable changes
with the domain of the input data.

The predictive models described here have a number of con-
straints. As with most linear regression models of this form, the
models were found to be good predictors of treatment effects in
the majority of comparisons we made if the ARC profile and dose
of the petroleum substance fell within the ARC profiles and doses
that had been used for model development (i.e., the prediction
was an interpolation). Not surprisingly, the models were some-
times less accurate predictors if the ARC profile and/or doses of

the unknown petroleum substance fell outside the ARC profiles
that had been used for model development (i.e., the prediction
was an extrapolation). To investigate and mitigate the extrapolated
data limitation requires that more biological studies be conducted
on substances with ARC profiles (derived using Method II) and
doses that are outside the profiles and doses that were used to de-
velop these models.

There are two other circumstances where the models may give
seemingly inaccurate results. In one situation the untested mate-
rial is inherently relatively non-toxic, that is, it has a flat or rela-
tively flat dose response curve. In this situation the model may
either predict a flat, slightly increasing, or slightly decreasing dose
response because of random variation around the flat slope. If the
model selects the dose response that is “contrary” to the expected
effect (slightly in the wrong direction, say a slope of 1.01 where a
slope of 1.0 or less is expected) then the model may appear to be in
error even though this is just a slight variation. The other situation
is when the ARC model predictions are in fact in error and result in
an unreasonable dose response model. For example, if for an un-
tested material the ARC model predicts a 500% increase in fetal
body weight for every 100 mg/kgy/day increase in dose, in this
case the prediction is contrary to what is expected and the pre-
dicted effect is large. As previously noted, the ARC models are com-
plex and have been built with a relatively small number of
materials (individual ARC profiles), there may be areas within the
ARC profile region where there is little or no biological information,
causing the model to falter. The second situation will be amelio-
rated when additional biological studies and associated PAC deter-
minations are conducted in the data poor regions. In the future, as
new test data become available, the results can be incorporated
into the current models, further corroborating them and expanding
the domain of applicability.

The domain of the data used to develop the models described in
this paper included dermal studies in rats, and the models cannot
be applied to other routes of exposure or other species. If data be-
come available for other routes or species then a similar model
development exercise may develop useful models for the addi-
tional route and/or species.

Although the various models were built using experimental
data developed on samples from across a range of petroleum cate-
gories, approximately 70% of the samples were from the gas oils
and heavy fuel oils categories. Because the compositional compo-
nent of the models is based only on ARC profile and not on specific
category membership, the models are applicable to a wide range of
petroleum substances in which PAC may be in some way related to
the effects of interest, with the proviso that the ARC profile of the
new substance is interpolated relative to the profiles of the sub-
stances used to develop the models.

It should be stressed that the models developed herein are
based strictly on observed statistical relationships, not on biologi-
cal knowledge or any presumed mechanism of action. No attempt
was made to identify causal relationships. Since the mechanism of
action is not understood, the data should be viewed only as indi-
cating that there is an association between the ARC profile and re-
peat-dose or developmental toxicity. The data should not be used
to draw conclusions about whether any of the specific PAC ring
structures, individually or collectively, is the cause of the observed
repeat-dose or developmental toxicity, only that the pattern of
ARCs (ARC profile) in a petroleum substance may allow an estimate
of toxicity through modeling.

8. Conclusions
The current review and evaluation of the unpublished company

laboratory toxicology and analytical reports show that predictive
models for effects on the selected most sensitive SIDS repeat-dose
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and developmental toxicity endpoints can be developed using the
weight percent of the array of the 1-7 and larger aromatic-ring
compounds in the test substance (the “ARC profile”). The effects
found to be associated with the ARC profile are consistent with
those reported for a number of individual PAHs and PAC-contain-
ing materials, although the mechanism(s) of toxicity in this regard
are not known and have not been investigated in this study.

In the repeat-dose toxicity studies, associations were found and
characterized between the ARC profile and effects on absolute thy-
mus weight, relative liver weight, hemoglobin concentration and
platelet count. In the developmental toxicity studies, associations
were found and characterized for effects on fetal weight, number
of live fetuses/litter and percent resorptions. These were the bio-
logical endpoints most commonly affected in the dataset and often
affected the determination of the LOEL. As part of a corroboration
exercise, and to show the wider applicability of the modeling pro-
cess, a model for the absolute maternal thymus weight from devel-
opmental toxicity studies was also successfully developed. The
overall four-part model testing and corroboration effort demon-
strated the ability of the models to predict results for HBPS with
a usable degree of accuracy.

It should be noted, the models were developed based on ob-
served statistical relationships. No attempt was made to identify
causal relationships. To do this would have required a more de-
tailed understanding of the mechanisms of PAC toxicity, or at least
a general understanding of the underlying mode of toxic action
that was beyond the scope of the current evaluation.
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