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HIGHLIGHTS

« Concentrations of dissolved hydrocarbons were stable in sealed test chambers.
« Acute toxicity (LL/ELso) values ranged 0.3-5.5 mg L~! loading rate.

« Chronic NOELR values ranged 0.05-0.64 mg L™! loading rate.

« PETROTOX provided conservative estimates of acute and chronic toxicity.

« Biodegradation reflected extensive microbial oxidation of the test substances.
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Light and middle atmospheric distillate petroleum substances are blended to produce fuels used in trans-
portation and heating. These substances represent the majority by volume of crude oil refined products in
the United States. The goal of this research was to develop biodegradability and aquatic toxicity data for
four substances; heavy, straight-run naphtha (HSRN), hydro-desulfurized kerosene (HDK), hydro-cracked
gas oil (HCGO), and catalytic-cracked gas oil (CCGO). Ready biodegradability tests demonstrated rapid
and extensive microbial oxidation of these test substances, indicating a lack of persistence in the aquatic
environment. Differences in biodegradation patterns reflected compositional differences in the constitu-
ent hydrocarbons. Results of aquatic toxicity tests on alga, cladocera, and fish demonstrated that toxicity
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Naphtha was greatest for catalytic-cracked gas oil, which contained a high proportion of aromatic hydrocarbons.
Gasoline Aromatic hydrocarbons are more soluble, and hence more bioavailable, resulting in higher toxicity. When
Kerosene expressed on the basis of loading rates, acute toxicity values (LL/ELso) ranged between 0.3 and 5.5 mg L~!
Gas oil

for all three species, while chronic no-observed-effect loading rates (NOELR) ranged between 0.05 and

0.64 mg L~!. PETROTOX estimates for acute and chronic toxicity ranged from 0.18 to 2.3 mgL™~" and

0.06 to 0.14 mg L™, respectively, which were generally more conservative than experimental data.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-SA license
(http://creativecommons.org/licenses/by-nc-sa/3.0/).
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1. Introduction

This paper reports new data on biodegradability and aquatic
toxicity for substances selected from the gasoline/naphtha, kero-
senefjet fuel, and gas oils categories which are used to complete
the fate and effects profiles for these distillates. Approximately
400 petroleum substances, sponsored by API's Petroleum HPV
Testing Group (PHPVTG), were organized into 13 categories to share
data and minimize animal testing. These petroleum substances are

* Corresponding author. Tel.: +1 410 745 6172.
E-mail address: jswigert@atlanticbb.net (J.P. Swigert).

http://dx.doi.org/10.1016/j.chemosphere.2014.02.028
0045-6535/© 2014 The Authors. Published by Elsevier Ltd.

transported around the world and fall under one or more statutes
for product classification and labeling (United Nations, 2005; OJEU,
2008). Environmental fate and effects data are used to assign
hazard ranking under these regulations.

These petroleum substances, listed as Class Il (TSCA) chemicals
or “Chemical Substances of Unknown or Variable Composition,
Complex Reaction Products and Biological Materials (UVCB)”, do
not exhibit specific and exact properties, but are characterized by
a range for physical-chemical, toxicological, and environmental
hazard values. Gasoline, kerosene, and gas oils can be grouped as
light or middle atmospheric distillates. Light atmospheric naphtha
distillates are low boiling point streams that are a major compo-
nent in gasoline (US EIA, 2013). Kerosene and gas oils are middle
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atmospheric distillates used to produce jet and diesel fuels. These
light and mid-atmospheric distillates have complex and variable
compositions of n- and iso-paraffins, naphthenes, olefins, and aro-
matics hydrocarbons. Hydrocarbons comprising gasoline and their
blending naphthas have approximately 4-12 carbon atoms, those
comprising kerosene have 9-16 carbon atoms, and those consist-
ing of gas oils have 9-30 carbon atoms (API, 2008, 2010, 2012).
Each test substance was selected to provide new information on
the environmental fate and hazards of the types of substances that
they represent. Detailed compositional analyses of the kerosene
and gas oil samples were used in the PETROTOX model to estimate
aquatic toxicity. These results, together with existing data (API,
2008, 2010, 2012) provide a dataset that can be used to character-
ize the environmental fate and hazard of the broader categories.

2. Materials and methods
2.1. Test substances

HSRN was tested for biodegradability, HDK was tested for
chronic aquatic toxicity, and HCGO and CCGO were tested for bio-
degradability, acute, and chronic aquatic toxicity. Samples of each
test substance were characterized for boiling point range, density,
and hydrocarbon type using ASTM methods. Carbon number range
was determined either from comprehensive gas chromatography-
mass spectrometry (GC-MS) analysis (petroleum naphtha) or from
two-dimensional gas chromatography/flame ionization detection
(2D-GC/FID). High resolution hydrocarbon analysis (2D-GC/FID)
for the kerosene and two gas oil test substances was performed fol-
lowing published methods (Blomberg et al., 1997; Edam et al,,
2005; Forbes et al., 2006). Data and sample identification are
reported in Table 1.

2.2. Aquatic toxicity tests

Testing of green algae (Pseudokirchnerella subcapitata), cladocera
(Daphnia magna), and fish (Oncorhynchus mykiss) followed US EPA
and OECD standard guidelines (OPPTS 850.5400, 850.1010,
850.1075; OECD 201, 202, 203). Fish tests employed the upper

Table 1
Test substances and physiochemical characterizations.

threshold concentration (UTC) approach in order to reduce the
number of test organisms (Jeram et al., 2005; ECVAM, 2006). The
UTC approach is based on the observed trend where acute fish
toxicity is often less severe than algae and D. magna when exposed
to a variety of toxicants (Weyers et al., 2000). The UTC was defined
as the lower of the two ELso values from the P. subcapitata and
D. magna tests. Fish were tested at the single UTC limit. When less
than 50% mortality occurred at the UTC, no further testing was
necessary since fish was not the most sensitive organism. D. magna
21-day reproduction tests followed OECD 211, and test endpoints
were based on the numbers of neonates produced per surviving
adult. Test details are summarized in Tables 2 and 3.

Water accommodated fractions (WAFs) were used as exposure
solutions in all tests (Girling et al., 1992, 1994; ASTM, 2009). All
WAFs were independently prepared on the basis of the loading rate
(total mg test substance added L~! dilution water). Test substances
were added to dilution media in glass mixing bottles using stain-
less steel and glass syringes. Loading rates were determined from
the volumes added and converted to mass per unit volume
(mgL~') based on the density of test substance. The solutions
were stirred at a rate to maintain a vortex of <10% of the static
liquid depth for approximately 24 h, then permitted to settle one
hour. The aqueous phase was collected from a bottom port in the
mixing vessel, with the initial 75-100 mL solution being discarded.
Prior to testing, a WAF equilibration trial was conducted to assess
dissolution times and stability of dissolved hydrocarbons.

2.3. Estimation of aquatic toxicity by PETROTOX

PETROTOX (Redman et al., 2012) was used to estimate toxicity
of the two gas oils and hydro-desulfurized kerosene. PETROTOX
computes toxicity of complex petroleum substances based on the
summation of the aqueous-phase concentrations of hydrocarbon
blocks that represent each test substance and uses the Target Lipid
Model (TLM) to calculate toxicity (Di Toro et al., 2000; CONCAWE,
2007; Redman et al., 2012). Input data for the model were provided
by the 2D-GC/FID analyses. PETROTOX modeling was not done for
the heavy straight-run naphtha because the aquatic hazard of this
substance was previously characterized (API, 2008).

CAS No. Name TSCA definition Carbon  ASTM D2887 or ASTM ASTM D1319 hydrocarbon
number D86 boiling point D4052 type (Vol%)
range range (°F) density
. I (gmL™) -
Initial 50% Final Aromatics Olefins Saturates
64741-41-9 Naphtha A complex combination of hydrocarbons obtained by the  6-12 210 252 352 0.7535 10 1 89
(petroleum), fractional distillation of petroleum. This fraction boils in a
heavy straight  range of approximately 20-135 °C (58-275°F)
run
64742-81-0 Kerosene A complex combination of hydrocarbons obtained froma 6-22 226 408 646 0.8204 17 3 80
(petroleum), petroleum stock by treating with hydrogen to convert
hydro- organic sulfur to hydrogen sulfide which is then removed. It
desulfurized consists of hydrocarbons having carbon numbers
predominantly in the range of C9-C16 and boiling in the
range of approximately 150-290 °C (302-554 °F)
64741-77-1 Distillates, A complex combination of hydrocarbons produced by the 8-30 274 412 555 0.8238 17 1 82
(petroleum), distillation of products from a hydrocracking process. It
light hydro- consists predominantly of saturated hydrocarbons having
cracked carbon numbers predominantly in the range of C10-C18,
and boiling in the range of approximately 160-320 °C (320-
608 °F)
64741-59-9 Distillates A complex combination of hydrocarbons produced by the 6-30 288 522 676 0.9618 75 7 18

(petroleum),
light catalytic-
cracked

consists of hydrocarbons having carbon numbers

distillation of products from a catalytic cracking process. It

predominantly in the range of C9-C25 and boiling in the
range of approximately 150-400 °C (302-752 °F). It

contains a relatively large proportion of bicyclic aromatic

hydrocarbons
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Summary of measured and estimated acute toxicity endpoints and summary of test design.

Category

P. subcapitata®

D. magna

0. mykiss

Loading rate 96-h ExLso
(mgl™")

Measured” 96-h ExCsq
(mgl™")

Loading rate 48-h ELsg
(mgl™")

Measured® 48-h ECsq
(mgl™")

Loading rate 96-h LLsq
(mgl™")

Measured® 96-h LCsqo
(mgl™")

Kerosene, hydro-desulfurized (HDK)

CAS# 64742- nd nd nd
81-0

PETROTOX 0.27 13 0.42

Gas oil, light hydro-cracked (HCGO)

CAS# 64741- 3.0/5.3 0.51/0.85 5.5 1.0 >2.6 >0.54
77-1

PETROTOX 0.91 2.3 0.62

Gas oil, light catalytic-cracked (CCGO)

CAS# 64741- 0.31/0.80 0.25/0.70 0.51 0.45 >0.30 >0.21
59-9

PETROTOX 0.20 0.35 0.18

Test parameters: test Static Static Renewal, 24-h

type

System 125-mL flasks; zero headspace; sealed caps 130-mL bottles; zero headspace; sealed  8-L bottles; zero headspace; sealed caps

Replicates/no. of

organisms
Duration

Dilution medium
Other test conditions

Basis of ECs0/LCso

96 h
supplement

illumination

12/10* cells mL™" at start

Algal nutrient medium with 400 mg NaHCO; L™"
Shaken at 100 rpm, 24 * 2 °C, 4300 lux continuous

Initial measured concentration

caps

4/5<24hold

48 h

Moderately hard reconstituted

20 £ 2 °C under a 16 h light/8 h dark

photoperiod
Mean measured concentration

1/7 juveniles

96 h

Moderately hard reconstituted

photoperiod

22 +1°C under a 16 h light/8 h dark

Mean measured concentration

nd = no data, hydro-desulfurized kerosene was not tested for acute toxicity.
@ Algal ExL/Cso endpoints are provided first for biomass yield (EpL/Cso) then growth rate (E,L/Csg).
b Measured EC/LCs values were based on mean measured hydrocarbon concentrations in the WAFs.

Table 3

Summary of measured and estimated chronic effect data.

D. magna 21-day reproduction tests®

Loading rate endpoints

Concentration endpoints

ELso (mgL™")

LOELR (mg L)

NOELR (mg L)

ECso (mgL™")

LOEC (mgL™1)

NOEC (mgL™1)

Kerosene, hydro-desulfurized (HDK) >0.48, 1.2° 0.48 >0.092, 0.23" 0.092
CAS# 64742-81-0 <1.2 <0.23
PETROTOX 0.12
Gas oil, light hydro-cracked (HCGO)
CAS# 64741-77-1 >0.64 - 0.64 >0.13 =€ 0.13
PETROTOX 0.14
Gas oil, light catalytic-cracked (CCGO)
CAS# 64741-59-9 0.24 0.10° 0.05 0.18 0.075" 0.038
PETROTOX 0.06
Test parameters: test Static renewal, every 48 h
type
System 130-mL bottles; zero headspace; sealed caps
Replicates/no of 10/1 < 24 h old neonates
organisms
Duration 21d

Dilution medium

Feeding

Other test conditions
Basis for ECsq, LOEC,

NOEC

Moderately hard reconstituted water

P. subcapitata equivalent to 0.13 mg C daphnid~! day~! (Days 0-7) and 0.20 mg C daphnid~! day~! (Days 8-21); Vita-chem added during
renewals at 25 pLL™!

20+ 2 °C under a 16 h light/8 h dark photoperiod
Mean measured concentration

2 Endpoints based on numbers of young produced per surviving adult.
b Statistically significant, p < 0.05.
¢ The LOELR and LOEC were not determined in this test.

2.4. Biodegradability studies

Ready biodegradability tests were run using a manometric
respirometer (Co-ordinated Environmental Services, Ltd., Kent,
England) according to OECD 301F. Oxygen consumption was mea-
sured during 28 or 47 days. The amount of oxygen taken up by the

microbial population over time was expressed as a percentage of
the theoretical oxygen demand (ThOD) of each test substance.

control,

abiotic control,

Concentrations of 50 mg L~! were tested for naphtha, gas oils,
the positive control sodium benzoate, a test substance toxicity
and mineral salts medium blanks.
Inoculum was prepared using fresh activated sludge from a sewage
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treatment facility that received predominantly domestic sewage.
The microbial activity of the inoculum was 10° colony-forming-units
mL ! in each test. Respirometry flasks were incubated at 20-22 °C.

2.5. Analytical methods

Dissolved hydrocarbon concentrations in the WAFs were
analyzed using automated static headspace gas chromatography
with flame ionization detection (HS GC-FID). A Perkin Elmer
Autosystem XL gas chromatograph was used together with a
30m x 0.53 mm id, 1.5 um film DB-5 (J&W Scientific) analytical
column. Test substance standards and o-xylene internal standard
solutions were prepared in acetone. Data were acquired and
processed using Perkin Elmer TotalChrom Workstation software
(Version 6.3.1). The total peak areas of chromatograms between 5.2
and 7.6 min (kerosene), 3.9 and 7.3 min (CCGO), and 3.5 and 6.3 min
(HCGO) for eluted hydrocarbon components were summed for
quantification of total solubilized hydrocarbons. The resulting con-
centrations of hydrocarbon components in the WAFs differed from
the parent standards owing to the differing solubilities of individ-
ual gas oil hydrocarbon components. Due to the complex nature of
the test substance, no attempt was made to identify and quantify
specific hydrocarbon components solubilized in the WAFs.

2.6. Data analysis

The 50% lethal or effect loading rate (LL/ELso) was defined as the
loading rate of the test substance calculated to produce 50% effect
in the test population for a given exposure period. The No Observed
Effect Loading Rate (NOELR) was defined as the highest loading
rate that did not exhibit a significant difference from the control.

(A)

FN WA UON

Abundance, Wt %

6‘°

Hydrocarbon Types

(B)

The Lowest Observed Effect Loading Rate (LOELR) was the lowest
loading rate that resulted in a significant difference in reproductive
output from the control group. These calculations were derived for
D. magna reproductive effects (fecundity, growth) and inhibition of
growth rate and biomass yield in P. subcapitata. Measurements of
total hydrocarbons in the WAFs were used to derive concentra-
tion-effect endpoints (LC/ECso; NOEC/LOEC). The calculations were
performed using standard statistical methods and computer
software (Hamilton et al.,, 1977; SAS, 2008; Gulley and WEST,
1994; US EPA, 2001). Statistical tests were performed at the 5%
significance level. Percent biodegradation values were calculated
following the methods in the test guideline using Microsoft Excel®
and the respirometer software.

3. Results
3.1. Test substance characterization data

Table 1 provides carbon number range, boiling point range,
density, and hydrocarbon types for each of the test substances used
in biodegradation and/or aquatic toxicity testing. Carbon numbers
and distillation ranges reflect the refining processes these
substances undergo. Saturated hydrocarbons made up the largest
proportion of hydrocarbon types in the HSRN (89%), HDK (80%),
and HCGO (82%). CCGO contained comparatively low saturate
content (18%), but was correspondingly high in aromatics (75%).

A more comprehensive representation of the hydrocarbon
composition of kerosene and the two gas oils was provided by
the 2D-GC/FID data. Detailed analysis was not done for HSRN
because no aquatic toxicity testing was conducted on this sample.
Fig. 1A-C presents the 2D-GC/FID plots for HDK (A), HCGO (B), and

Abundance, Wt %

.l ! "t
N, G ., e,
’710 ’bo q ’194 ”'64

VA %oq

Hydrocarbon Type

(C) 25

20

15

Abundance, Wt %

Hydrocarbon Type

Fig. 1. Two-dimensional GCXGC plots for (A) hydro-desulfurized kerosene (CAS# 64742-81-0), (B) light hydro-cracked gas oil (CAS# 64741-77-1), and (C) light catalytic-
cracked gas oil (CAS# 64741-59-9). Hydrocarbon types: nP = normal paraffins; isoP = iso-paraffins; N = naphthenes; nCC5/6 = substituted cyclopentanes and cyclohexanes;
isoN = iso-naphthenes; diN = di-naphthenes; monoA = mono-aromatics; NmonoA = naphtheno-aromatics; diA = di-aromatics; NdiA = naphtheno-di-aromatics; triA = tri-

aromatics; tetraA = tetra-aromatics; NtetraA = naphtheno-tetra-aromatics.
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CCGO (C). The saturate component of HDK consisted of n- and
iso-paraffins, iso-naphthenes, di-naphthenes, and smaller propor-
tions of substituted cyclopentanes and cyclohexanes (Fig. 1A).
The aromatic fraction was composed of monoaromatic and naph-
theno-monoaromatic compounds. Polyaromatic constituents were
essentially absent from the hydro-desulfurized kerosene. Analysis
of HCGO showed saturates to be composed of n- and iso-paraffins,
naphthenes and di-naphthenes; aromatics consisted of mono-
aromatic and naphtheno-aromatic compounds (Fig. 1B). Trace
amounts of polyaromatic compounds also were present. The
hydrocarbon fingerprint of CCGO differed substantially from
the HCGO sample. Saturated hydrocarbons in CCGO comprised
only a small fraction when compared to the aromatic constituents
(Fig. 1C). The aromatic fraction was dominated by di-aromatic
compounds with lesser amounts of naphtheno-di-aromatic
compounds.

3.2. WAF equilibration and stability

A 24-h WAF equilibration was selected since no increase in total
WAF hydrocarbons was measured beyond this equilibration time
(Fig. 2A-C). Total hydrocarbon concentrations in the WAFs tended
to remain steady in the sealed test chambers, and the presence of
Daphnia food in the WAFs also did not substantially alter the

g 10
£ A
T
] - 1t
'g -

oo —
e —a - a
© 0.1+
g
=3 —
7] g *
©
g 0.01 T T

24 h 48 h 72h

WAF Mixing Time

—e—0.1 ppm loading —@—1 ppm loading

—a&—10 ppm loading

Measured Hydrocarbons,
mg L
o

0.01 T T
24 h 48 h 72h

WAF Mixing Time

——0.1 ppm loading —®—0.5 ppm loading —&—5 ppm loading

g 10
8
: (C) . .
.
- [ L 4
TE
® 017 . * .
S
>
3
g 0.01 T T
2 24 h 48 h 72h

WAF Mixing Time

——0.1 ppm loading —8—0.5 ppm loading —&—5 ppm loading

dissolved hydrocarbon concentrations (Fig. 2E and F). Analysis of
hydrocarbon concentrations in WAFs as a percentage of the loading
rates showed 60-88% of CCGO dissolved, compared to 15-31% of
HDK, and 18-33% of HCGO (Fig. 3).

@ 100
o 88
£
8 30 78
o
]
60
) BN
-]
]
] 31 28 33
% 24
w20 15 = 18 == =a s
-
c
]
S o
)
a 0.1 1 10| 0o1] o5 ] s 01 ] o5 | s
Kerosene Hydro-cracked Gas Oil |Catalytic-cracked Gas Oil

Nominal WAF Loading Rate, mg L™

Fig. 3. Measured solubilized hydrocarbons in the WAFs as a percent of the loading
rates.
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Fig. 2. Results of the equilibration trial showing dissolved hydrocarbon concentrations in WAFs of HDK (A), HCGO (B), and CCGO (C), after 24, 48, and 72-h stirring and
concentrations of dissolved hydrocarbons in WAFS of HDK (D), HCGO (E), and CCGO (F) in sealed test vessels after 24-h and 48-h. No data were available for the 5 ppm HCGO

and CCGO for treatments with Daphnia food present.
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3.3. Aquatic toxicity testing and modeled data

3.3.1. Acute toxicity data

Table 2 presents acute toxicity test results of HCGO and CCGO
and PETROTOX toxicity estimates for HDK using 2D-GC FID hydro-
carbon composition. Toxicity endpoints were calculated on the ba-
sis of loading rates (EL/LL values) and measured hydrocarbon
concentrations (EC/LC values). Lethal and other effect endpoints
based on concentration measurements should not be interpreted
as being equivalent to concentrations of the whole test substance.
The distribution and percentage of hydrocarbon constituents mea-
sured in the WAFs differed from the parent test substance owing to
the various water solubility values of the individual hydrocarbons.
Therefore, measured concentrations do not represent all or the
same proportions of hydrocarbons constituting the test substance.
A comparison of toxicity results on a loading rate basis showed
CCGO to be approximately ten times more toxic to P. subcapitata
and D. magna than HCGO. P. subcapitata biomass (50% reduction)
effects for the two gas oils occurred at 3.0 (HCGO) and 0.31 mg L™!
(CCGO) loading, while 50% immobilization in D. magna was ob-
served at 5.5 versus 0.51 mgL~!, respectively. Algal endpoints
based on growth rate showed less of a difference in effects between
the gas oils than when compared to cell yields. Application of the
UTC method (Jeram et al., 2005) for vertebrate testing proved
advantageous in limiting the numbers of fish used in evaluating
the toxicity of gas oils. The UTC was defined by the algal tests of
HCGO (3.0mgL™!) and CCGO (0.31 mgL~!). Fish tested at the
UTC loading limit for both gas oils (2.6 mgL~': HCGO and
0.3 mgL': CCGO) showed no mortality or adverse effects, thus
no further testing of fish was necessary.

PETROTOX estimates of LLsg/ELsg values for HDK were
0.27 mg L~ (P. subcapitata), 1.3 mg L' (D. magna), and 0.42 mg L~!
(0. mykiss). PETROTOX predicted CCGO was more toxic to all species
than HCGO (Table 2), and this finding is consistent with the
experimental data. Differences in predicted toxicity endpoints were
approximately two to six times lower than the observed effects for
the CCGO. For HCGO and CCGO, 0. mykiss was predicted to be
the more sensitive organism, but this was not corroborated by the
test data.

Acute EC/LCsq values determined from measured hydrocarbon
concentrations in the WAFs are included in Table 2. The 96-h
ECso values for the toxicity of HCGO to P. subcapitata were
0.51 mg L' (biomass) and 0.85 mg L™! (growth rate), while those
for CCGO were 0.25mgL ! (biomass) and 0.70 mgL ! (growth
rate). For D. magna, acute 48-h ECsy values were 1.0 mgL! for
HCGO and 0.45 mgL~! for CCGO. For O. mykiss, the acute 96-h
LCso values were >0.54 mg L~! (HCGO) and >0.21 mg L' (CCGO).

3.3.2. Chronic toxicity data

Reproductive toxicity test data and PETROTOX estimates of
reproductive NOELRs are presented in Table 3 for HDK, HCGO,
and CCGO. Trends in chronic toxicity followed a similar pattern
as that shown for acute toxicity. CCGO demonstrated the greatest
reproductive toxicity to daphnids, followed by HDK and HCGO.
The 21-day reproductive ELso for HDK fell between the 0.48 and
1.2 mg L' exposure levels. The NOELR for HDK was 0.48 mg L~}
based on a lack of statistically significant effects on reproduction
and adult growth, while the LOELR of 1.2mgL~! caused 90%
mortality in the parent animals. Therefore the reproductive ELsq
lay between these two loading rates. No adverse effects on repro-
duction were evident at any of the HCGO loading rates used in
the test. The reproductive NOELR and ELs, were 0.64 mgL~! and
>0.64 mg L™, respectively. The chronic reproductive ELso, LOELR,
and NOELR values for CCGO were 0.24mgL~!, 0.10mgL!, and
0.05 mg L', respectively. Corresponding endpoints determined
for measured hydrocarbon concentrations are shown in Table 3.

PETROTOX estimates of chronic toxicity for HDK, HCGO, and
CCGO showed reasonably good agreement to the endpoints
defined in the tests. Differences can be attributed to variability in
species sensitivity or loss of hydrocarbons during manipulations
of the WAFs. These modeled estimates complement the test data
for describing the chronic toxicity hazards for the categories.

3.4. Biodegradation

The biodegradation plots for HSRN, HCGO, CCGO, and sodium
benzoate illustrate the rapid consumption of these petroleum sub-
stances and reference chemical by the activated sludge inoculum
(Fig. 3). HSRN and HCGO reached 77% and 64% biodegradability
at 28 days, respectively, and met the 60% ready biodegradability
criteria. CCGO degraded by 56%, and did not meet the criteria.
By 47 days, CCGO degraded to 61% and HCGO reached 74% degra-
dation, although the majority of both substances had been con-
sumed within the first 28 days. These data show substantial
ultimate biodegradability since the remaining fraction (e.g., 30-40%)
is assumed to be assimilated as microbial biomass. Although not
shown, the patterns of biodegradation of the toxicity control treat-
ments approximated those for each test substance alone, indicat-
ing no inhibitory effect of the test substances on biodegradation.

4. Discussion
4.1. Loading rates and WAF equilibration

Petroleum substances have long been recognized as being ‘dif-
ficult to test’ in aquatic toxicity studies due to the variable water
solubility and volatility characteristics of the hydrocarbon constit-
uents (Bennett et al., 1990; ECETOC, 1996; OECD, 2000). Insoluble
oil retained in the exposure solutions creates gross exposure haz-
ards such as physical entrapment, loss of buoyancy, and fouling
of gill surfaces from the bulk oil product. To distinguish these ef-
fects from true chemical toxicity during aquatic toxicity testing
and to avoid masking the chemical toxicity by physical effects of
the oil on the test organism, it is necessary to eliminate insoluble
oil substance in the exposure vessels (Girling et al., 1992, 1994).

The dissolution of the hydrocarbons of HDK, HCGO, and CCGO in
the WAFs were examined (Fig. 2A-C). All test substances achieved
equilibrium between the oil product and aqueous phases after 24 h
of stirring, regardless of loading rate. Once WAFs were placed in
sealed test chambers with no headspace, little or no loss of
dissolved hydrocarbons occurred (Fig. 2E and F).

Solubilization of hydrocarbon type was influenced both by load-
ing rate and hydrocarbon composition of the test substance. Mono
and di-aromatic constituents, present at higher percentages in
petroleum streams such as CCGO have greater solubility than sat-
urate hydrocarbon constituents, as in HCGO and HDK, which are
present at a lower percentage in the dissolved phase. This was
illustrated by the comparison of the percentage of the loading rates
that dissolved into the WAFs for the two gas oils (Fig. 3). The ratio
of dissolved total hydrocarbons to loading rate generally declines
as loading rate increases. The percentages of the solubilized
hydrocarbons at the 0.1 mgL~! loading rate for HCGO and CCGO
did not follow this pattern, but this was likely due to analytical
limitations at that loading rate. As more petroleum product is
added to water, only the more soluble components continue to
dissolve, until maximum solubility is reached for each constituent.
This means that the ratios of the dissolved hydrocarbon constitu-
ents in WAFs will not be equal to their proportions in the test
substance (Shiu et al., 1990). Therefore, toxicity endpoints
determined on the basis of dissolved concentrations, i.e., LC/ECs,
should not be considered equivalent to concentrations of the whole
test substance.
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Loading rate is a necessary element in the description of toxicity
test results, as it provides a unifying concept for expressing the
results of toxicity tests of poorly-soluble, multi-constituent petro-
leum substances. The concept and rationale for loading rates have
previously been described (Girling et al., 1992, 1994), and their use
has found acceptance in scientific and regulatory bodies (GESAMP,
2002; OJEU, 2005; ASTM, 2009; ECHA, 2012).

4.2. Acute toxicity

Loading rate endpoints for the two gas oils are similar to those
reported for other gas oil samples. Measured EL/LLsy values re-
ported by Redman et al. (2012) ranged between 0.28 and
25 mg L~! for P. subcapitata (n = 8), 0.32-42.2 mg L~! for D. magna
(n=15), and 6.6-65mgL~! for O. mykiss (n=3). EL/LLso values
from our tests fell at the low end of those ranges. The absence of
any response by O. mykiss at the UTC for either gas oil prevented
comparison to fish values in Redman et al. (2012).

When ELsg values for P. subcapitata and D. magna are considered
on the basis of loading rates, there was roughly a ten-fold differ-
ence between the high saturate gas oil (HCGO) and the high
aromatic gas oil (CCGO) (Table 2). On the basis of dissolved hydro-
carbon concentration, the ECsq values differed by about a factor of
two. The “higher effective loading rate” for HCGO is due to the
lower proportion of water soluble constituents as compared to
the high aromatic gas oil. CCGO showed greater toxicity than
HCGO on a loading rate basis due to the higher proportion of
soluble aromatics, and hence, more bioavailable hydrocarbon
constituents.

Bioavailability of the hydrocarbon types is also dependent on
aqueous solubility cut-off values for saturated and aromatic
hydrocarbons. As chain length and/or molecular weight increases,
aqueous solubility decreases to a concentration where no biotic
effect occurs. Adema and van den Bos Bakker (1987) demonstrated
this point occurs at C10 for paraffins (i.e., no acute toxicity was
observed in a saturated solution of n-decane and higher molecular
weight paraffins). For a series of alkylbenzenes, the water solubility
cut-off was reported to be C14 (Adema, 1991). The test substances
used in this study are not exclusively composed of n-paraffins or
mono-aromatics, but the solubility behaviors of other saturated
and aromatic hydrocarbons for structures of equal or near equal
molecular weights are expected to follow a similar relationship.
In addition to the effect of hydrocarbon type on solubility, CCGO
has constituents of lower molecular weight than HCGO. This was
evident by the carbon number ranges of C8-30 and C6-C30 for
HCGO and CCGO, respectively. The C6 and C7 fraction of CCGO
would have included constituents of water soluble aromatic and
saturated compounds.

Both alkyl and aryl hydrocarbons are believed to exert their tox-
icity primarily via a common nonpolar narcosis mode of action,
and all hydrocarbons in solution are expected to contribute to tox-
icity (Peterson, 1994). Toxicity is manifested in the organism once
a critical body burden is attained, thus the organism-water
partitioning of the dissolved constituents is an important aspect
of the process (van Wezel and Opperhuizen, 1995). Individual
hydrocarbons have different partition coefficients that vary with
molecular weight and isomeric structure. The endpoint variability
on a dissolved hydrocarbon basis shown by the two gas oil tests
may be explained by differences in target organ partitioning
behavior of the hydrocarbon types (McCarty and Mackay, 1993;
Peterson, 1994; van Wezel and Opperhuizen, 1995).

The estimated EL/LLsy endpoints derived using PETROTOX sup-
port the relative toxicity of the two gas oils determined by the test
data. Predicted endpoints for the three test species were all lower
than test results. Compared to estimates of Redman et al. (2012),
our EL/LLso estimates proved similar for gas oils but fell slightly

lower than for kerosene. Endpoint values for several gas oils re-
ported by Redman et al. (2012) for P. subcapitata and D. magna
ranged 0.2-0.92mgL ! (n=5) and 035-2.30mgL' (n=5),
respectively. No PETROTOX estimates for O. mykiss were reported.
Ranges reported for kerosene were 1.03-1.31 mg L™! (P. subcapitata,
n=3), 2.52-3.81mg L' (D. magna, n=4), and 1.72-2.24 mg L™’
(0. mykiss, n =3) (Redman et al., 2012).

Some conservatism in the predicted endpoints may be expected
as the PETROTOX model cannot account for all potential losses of
hydrocarbon constituents from WAFs, particularly for fish tests
(McGrath et al., 2005; Redman et al., 2012). Manipulations of WAFs
during preparation and distribution to test chambers can result in
loss of hydrocarbon components from the WAFs. The PETROTOX
model does not account for these potential losses, and the reduced
exposure in toxicity tests would result in higher endpoint values
than what the model predicts.

4.3. Chronic toxicity

No 21-d reproduction studies with D. magna using WAFs or
PETROTOX chronic endpoint estimates have been previously
reported in the literature for kerosene or gas oil substances. The
chronic toxicity endpoints from the reproduction studies on the
two gas oils (Table 3) showed a similar relationship as demon-
strated for acute toxicity. Based on a reduction in the numbers of
young produced per surviving adult, the high aromatic CCGO dem-
onstrated the greatest chronic toxicity of the three test substances.
No significant adverse effects on reproduction (p >0.05) were
measured for the HCGO WAFs prepared at any loading rates.
Comparison of the chronic data endpoints for the two gas oils
clearly demonstrates that composition influences bioavailability
and toxicity of these substances. The test of HDK achieved both
effect and no-effect levels. While the 0.48 mgL~' loading rate
caused no adverse effect on reproduction, the next higher loading
rate of 1.2mgL~' caused significant mortality and reduced
neonate production. These data show that when steps are taken
to control the loss of dissolved constituents in the exposure WAFs,
these middle atmospheric distillates can show chronic toxicity
below one part per million as loading rate and dissolved hydro-
carbon constituents.

PETROTOX estimates of chronic NOELRs were in good agree-
ment with test NOELR for CCGO, but more conservative than those
obtained for HCGO and kerosene. Loss of volatile components
during handling of the HCGO and kerosene WAFs may have played
a role in reducing the exposure concentrations.

4.4. Biodegradation

Biodegradation testing of petroleum substances presents a
challenge due to water solubility limits and volatilization, so the
appropriate method is important to establish the capacity of these
substances to degrade. The respirometry method (OECD 301F)
makes use of sealed incubation vessels and zero headspace to
prevent volatile loss and enhance solubility.

Biodegradation results demonstrated rapid utilization of the
petroleum substances by the microbial inoculum (Fig. 4). The rela-
tive differences in patterns of biodegradation of these substances
can be explained by molecular weight and hydrocarbon type char-
acteristics. Low molecular weight components degrade relatively
easily, while higher molecular weight components require more
time to mineralize (Prince, 2002; Seo et al., 2009). Molecular
structure also affects microbial degradation. Highly branched
alkanes and multi-ring cycloalkanes are slower to degrade than
their straight-chain analogs (Schaeffer et al., 1979; Solano-Serena
et al., 1999; Prince, 2002).
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Fig. 4. Percent biodegradation plot for heavy straight-run naphtha, hydro-cracked
gas oil, and catalytic-cracked gas oil.

With a relatively low and narrow boiling range, and high alkyl
composition, HSRN proved the most amendable to biodegradation.
It showed the greatest extent and rate of biodegradation of the
three substances, easily meeting the 28-d criteria for ready biode-
gradability. HCGO was composed of a similar proportion of saturated
components, but included higher molecular weight compounds
that required more time to degrade. The HCGO oil achieved
similar biodegradation as HSRN (74% biodegradation) by day 47.
Biodegradation of CCGO showed an initial rapid phase that likely
represented simple paraffins and monoaromatic compounds.

5. Conclusions

Acute and chronic aquatic toxicity tests of the two gas oils
together with chronic aquatic toxicity of hydro-desulfurized kero-
sene illustrates the impact that hydrocarbon composition of a
petroleum substance has on bioavailability. Test substances with
the larger proportion of aromatic constituents showed greater
toxicity, due to the greater bioavailability of aromatic hydrocar-
bons, when compared to saturated hydrocarbons on an equivalent
molecular weight basis. The reported acute and chronic aquatic
toxicity results are new data for HDK, HCGO, and CCGO.

PETROTOX estimates of toxicity endpoints generally overesti-
mated toxicity, but in lieu of testing many individual samples,
PETROTOX can provide conservative estimates of aquatic toxicity.

Biodegradation experiments showed these light and middle
atmospheric distillate substances biodegrade at a relatively rapid
rate. The differences in biodegradation patterns for each test
substance reflect the molecular weight and compositional differ-
ences in the constituent hydrocarbons.

Testing WAFs is the most reliable method to assess aquatic
effects of hydrocarbon UVCB substances. The loading rate method
provides a consistent basis for aquatic testing of UVCB hydrocar-
bons, and has found acceptance in scientific and regulatory bodies
(GESAMP, 2002; OJEU, 2005; ASTM, 2009; ECHA, 2012).
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