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Article

Disulfide Oil Hazard Assessment Using
Categorical Analysis and a Mode of
Action Determination

David Morgott1, Christopher Lewis2, James Bootman2, and Marcy Banton3

Abstract
Diethyl and diphenyl disulfides, naphtha sweetening (Chemical Abstracts Service [CAS] # 68955-96-4), are primarily composed of
low-molecular-weight dialkyl disulfides extracted from C4 to C5 light hydrocarbon streams during the refining of crude oil. The
substance, commonly known as disulfide oil (DSO), can be composed of up to 17 different disulfides and trisulfides with monoalkyl
chain lengths no greater than C4. The disulfides in DSO constitute a homologous series of chemical constituents that are perfectly
suited for a hazard evaluation using a read-across/worst-case approach. The DSO constituents exhibit a common mode of action
that is operable at all trophic levels. The observed oxidative stress response is mediated by reactive oxygen species and free
radical intermediates generated after disulfide bond cleavage and subsequent redox cycling of the resulting mercaptan. Evidence
indicates that the lowest series member, dimethyl disulfide (DMDS), can operate as a worst-case surrogate for other members of
the series, since it displays the highest toxicity. Increasing the alkyl chain length or degree of substitution has been shown to
serially reduce disulfide toxicity through resonance stabilization of the radical intermediate or steric inhibition of the initial
enzymatic step. The following case study examines the mode of action for dialkyl disulfide toxicity and documents the use of
read-across information from DMDS to assess the hazards of DSO. The results indicate that DSO possesses high aquatic toxicity,
moderate environmental persistence, low to moderate acute toxicity, high repeated dose toxicity, and a low potential for
genotoxicity, carcinogenicity, and reproductive/developmental effects.

Keywords
disulfide oil, CAS# 68955-96-4, mode of action, oxidative stress, category approach

Introduction

The creation of chemical categories is an accepted method of

grouping chemicals with similar structural, physiochemical,

toxicological, or environmental properties for the purpose of

hazard assessment.1 The benefits include a reduction in animal

usage, testing costs, and the time needed to conduct a hazard

assessment. As such, categorical analysis has become an effi-

cient and effective method of examining potential hazards of a

host of interrelated chemicals. Guidance on the construction

and use of chemical categories has been developed by several

organizations including the Organisation for Economic

Co-operation and Development (OECD), European Centre for

Ecotoxicology and Toxicology of Chemicals (ECETOC),

European Chemicals Agency (ECHA), and the United States

Environmental Protection Agency (USEPA) under the High

Production Volume Challenge Program (HPVCP).2-5 Estab-

lishment of a chemical category is predicated on the assump-

tion that each member of the category is related in some

systematic fashion and that shared molecular or physical

properties play a definitive role in eliciting an adverse effect.

Once created, based on similarities in chemical structure,

mechanism of action and/or toxicological profile, obvious

data gaps can be identified and filled using qualitative or

quantitative structure activity analysis.6

Inherent to the category approach is the understanding that a

reference substance exists within the chemical category whose

test results may be applied to those members lacking the requi-

site information needed for a complete characterization of the

physical properties or hazards in a particular domain.7 This is

the so-called ‘‘read-across’’ provision that provides the basis

for extrapolating the results from 1 member of the category to

another when sufficient justification exists. This justification

necessarily includes evidence that members of the chemical

category operate through a common initiating event or mode

of action and that response differences occur in a regular and

predictive fashion. In this article, we discuss an analogous
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situation in which the hazards of a complex substance contain-

ing similar constituents can be assessed using a read-across/

worst-case approach for the most toxic member of the series.

The HPVCP identified diethyl and diphenyl disulfides,

naphtha sweetening (Chemical Abstracts Service [CAS] #

68955-96-4), as candidate materials based on production

volume estimates exceeding 1 million pounds per year.

Commonly known as disulfide oil (DSO), this substance is a

combination of dialkyl disulfides and trisulfides which are a

by-product of petroleum refining. The substance is neither sold

commercially nor used directly in any downstream products, so

exposure is generally limited to workplace operations associ-

ated with its disposal as a waste product. The status of DSO

under the HPVCP has evolved considerably since first pro-

posed in 1990.

After sponsorship by the American Petroleum Institute’s

Petroleum HPV Testing Group (PHPVTG) in 2003, DSO was

grouped together with 4 other disulfide waste streams that ulti-

mately lost sponsorship in 2006 due to production termination,

errors in inventory reporting, or in the identification of

enclosed recycling and reuse practices. The DSO was then

merged into a new product category termed Reclaimed Sub-

stances, where it represented 1 of the 5 subgroups. Companies

belonging to the PHPVTG sponsored approximately 400 petro-

leum substances for review under the HPVCP. These sub-

stances were organized into 13 chemical categories to

facilitate data sharing and to avoid redundant testing. A data

review and assessment for DSO were originally submitted

under the HPVCP in 2008 together with the required robust

summaries. Following a revision and update that reflected

comments received from the USEPA, the data package was

resubmitted in 2010. Final acceptance and approval of the

resubmission was issued in March 2012 with the conclusion

that data gaps did not exist in the hazard analysis.8

Polysulfides such as those in DSO recently came under

close scrutiny as inducers of oxidative stress in biological

systems.9 Their ability to form reactive sulfur species that dis-

rupt the overall redox status within a cell is well documented

for the various classes.10 The nature of the sulfide bridge and

hydrocarbon side chain can, however, dramatically impact the

overall reactivity and capacity to induce oxidant damage. In

general, the reactivity increases in following order with

tetrasulfides > trisulfides > disulfides. Similarly, hydrocarbon

functional groups display differences in free radical production

with alkenes > alkanes > phenyl substituents.11,12 Important

exceptions have been shown to exist, however, particularly

with the olefins where the location of the double bond can have

a decided impact. Since DSO does not contain any aryl- or

alkenyl-substituted disulfides or trisulfides, the primary

concern lays with the relative toxicity of the alkyl-substituted

polysulfides.

Dimethyl disulfide (DMDS) in particular has undergone

extensive toxicological testing with the results showing a pat-

tern of behavior that is consistent with an oxidative stress

response.13 The general applicability of this specific mode of

action provides a basis for evaluating the hazards of all

disulfide and trisulfide constituents of DSO. There have been

numerous examples of the successful application of the cate-

gory approach for assessing a wide array hazards ranging from

skin sensitization to teratogenicity.14 Although the category

approach was successfully used to describe the hazards for

individual members of a chemical class, there were few exam-

ples of its use with a homologous series of chemicals. The

following case study examines the evidence that was used to

satisfy the HPVCP hazard evaluation requirements for DSO

and highlights the use of a categorical approach with a mode

of action determination to justify a read-across hazard assess-

ment.15 The analysis takes advantage of recently released

DMDS study summaries prepared by the pesticide registration

divisions at USEPA and California Environmental Protection

Agency.16,17

Formation and Composition of DSO

Disulfide oil is generated during mercaptan removal from

selected hydrocarbon streams by a process known as sweeten-

ing, whereby sour-smelling sulfides are removed from the

stream by an extraction process.18 The mercaptans can be

extracted from this feedstock in an entirely closed system, such

as a Merox unit, which can be designed to operate with any of a

variety of petroleum streams including liquefied petroleum gas,

naphtha, or other light distillates such as jet fuel and kerosene.

Merox units use a basic solution of caustic soda as the extract-

ing solvent, which is recycled and reused in a continuous loop

following each cycle. Once removed, the mercaptans are

oxidized to disulfides, which are separated from the caustic

soda solution. The final DSO is then either handled as waste

on site or processed as: (1) an internal fuel, (2) a feedstock for

sulfuric acid production, or (3) an agent for conditioning

refinery catalysts.

The DSO is primarily composed of low-molecular-dialkyl

disulfides and trisulfides with a total carbon content of C2 to

C8. The DSO does not contain measurable amounts of aryl

mercaptans or aryldisulfides, despite their suggested presence

from the formal CAS nomenclature. Although the composition

of DSO has historically relied upon retention time comparisons

following gas chromatographic separation, more sensitive and

specific methods are now employed. Using high-resolution gas

chromatography together with mass spectrometry (GC-MS,

American Society for Testing and Materials [ASTM] D

3670), a representative sample of DSO was submitted for qua-

litative and quantitative analyses by a certified laboratory.19

The results reveal the presence of dialkyl disulfides and

trisulfides as the major constituents with small amounts of

monosulfides, heterocyclic disulfides, mercaptans, miscella-

neous sulfur-bearing substances, and a limited number of resi-

dual hydrocarbons. Taken together, the secondary compounds

account for approximately 9% of the overall mass by weight.

As shown in Table 1, the composition of this sample was char-

acterized by the presence of 12 disulfides, with 10 possessing

individual concentrations greater than 0.5%. The 10 disulfides

comprise approximately 87% of the total weight and were

182S International Journal of Toxicology 33(Supplement 1)
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Table 1. Identity and Concentration of the Individual Disulfides in a Sample of Disulfide Oil.

Disulfide constituent Chemical structure CAS number Chemical formula Mol wt Conc DSOa, % w/w

Dimethyl disulfide

S S

CH3

CH3
S S

CH3

CH3
624-92-0 C2H6S2 94.22 12.0

Methyl ethyl disulfide

S S

CH3

CH3

20333-39-5 C3H8S2 108.25 18.2

Methyl isopropyl disulfide

S S

CH3

CH3
CH3

40136-65-0 C4H10S2 122.28 14.4

Diethyl disulfide

S S

CH3

CH3 110-81-6 C4H10S2 122.28 11.2

Methyl n-propyl disulfide

S S

CH3

CH3

2179-60-4 C4H10S2 122.28 7.7

Ethyl isopropyl disulfide

S S

CH3

CH3
CH3

53966-36-2 C5H12S2 136.31 11.6

Ethyl n-propyl disulfide

S S

CH3

CH3

30453-31-7 C5H12S2 136.31 7.0

Diisopropyl disulfide

S S

CH3
CH3

CH3

CH3 4253-89-8 C6H14S2 150.34 2.0

Ethyl n-butyl disulfide

S S

CH3

CH3

63986-03-8 C6H14S2 150.34 0.5

Dipropyl disulfide CH3

CH3

S S

629-19-6 C6H14S2 150.34 2.5

(continued)
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representative of a homologous series with DMDS beginning

the series. The molecular weight of the disulfides ranged from

94 to 150 amu and showed a strong similarity in chemical

structure, with each possessing a characteristic disulfide link-

age attached to a C1 to C4 alkyl group. In addition, 4 dialkyl

trisulfides were present at levels ranging from 0.4% to 1.6%.

By comparison, previous analyses using less accurate gas chro-

matographic techniques showed the presence of methyl butyl,

ethyl butyl, and propyl butyl disulfides in various isomeric

forms at levels that ranged up to 3.5%. Likewise, remarkably

similar distribution ratios were observed in these previous

assays with the methyl, ethyl, and propyl homologs predomi-

nating at individual concentrations generally ranging from 5%
to 20%. A full description of the analytic results using GC-MS

is presented in Supplemental Table 1. It shows that less than

0.5% of DSO is composed of hydrocarbons and that the balance

is composed of low-molecular-weight monosulfides and trisul-

fides that individually comprise less than 2% of the total weight

percentage.

At room temperature, DSO exists as a yellow liquid with an

extremely foul and obnoxious odor.20 Measurement of key

chemical and physical properties (see Table 2) using standar-

dized methods reveals that the substance is highly flammable

with a moderately high-vapor pressure and low-water solubi-

lity.21 The chemical and physical properties for the individual

DSO disulfides were estimated using EPA’s Estimation

Program Interface (EPI) Suite software package and are

provided in Supplemental Table 2 along with actual measure-

ments when available.22 Except for melting points, the esti-

mated and measured values agree well. The estimates also

show a regular incremental change as the molecular weight

increases for each disulfide. Boiling points and octanol/water

partition coefficients show a direct relationship with molecular

weight; whereas, the melting points, vapor pressures, and water

solubilities are inversely related.

Environmental Fate

The environmental fate of DSO was not specifically evaluated,

because it is a UVCB (unknown or variable composition, com-

plex reaction products, or biological material substance).

Insight into likely fate processes, compartment preferences,

and steady-state distributions can be gained, however, by

examining individual disulfides using available structure activ-

ity models and by examining available categorical test data for

key homologs in the disulfide series. Many of the disulfides in

DSO are naturally found in the environment either as ingredients

in vegetables, especially Allium species such as garlic and

onions, or as products of the microbial oxidation of assimilated

mercaptans.23 Similarly, natural background emission rates of

DMDS were reported for salt marshes, rice paddy fields, food

waste decomposition, and some soil types.24-26 The DMDS

emissions were estimated to contribute 3% to the atmospheric

load of sulfur on a global scale, but the contribution can be as

Table 1. (continued)

Disulfide constituent Chemical structure CAS number Chemical formula Mol wt Conc DSOa, % w/w

Dimethyl trisulfide

S S

CH3
S
CH3

3658-80-8 C2H6S3 126.26 1.6

Diethyl trisulfide

S S S

CH3

CH3

3600-24-6 C4H10S3 154.32 0.7

Methyl propyl trisulfide

S S

CH3
S

CH3

17619-36-2 C4H10S3 154.32 0.5

Diisopropyl trisulfide

S S S
CH3

CH3

CH3

CH3 5943-34-0 C6H14S3 182.37 0.4

Total 90.3

Abbreviations: Conc, concentration; CAS, Chemical Abstracts Service; DSO, disulfide oil; Mol Wt, molecular weight.
aConcentration may vary depending on the characteristics of the unsweetened crude oil.
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high as 10% on a regional scale.27 Interestingly, DMDS was

shown to be absorbed from air into moist and dry soils at a rate

that was influenced by the presence of soil microbes, which

facilitated the uptake into moist, but not dry, soil.28 These find-

ings are consistent with the observation that DMDS failed to

show a consistent air exchange rate in 3 subtropical forests with

both positive and negative fluxes observed.29

The DMDS was also found to rapidly photo-oxidize under

tropospheric conditions to form sulfur dioxide and methane

sulfonic acid.30 The rate constant for reaction with hydroxyl

radicals in the atmosphere was determined to be 2.3 � 10�10

cm3/mol sec, which is equivalent to a daytime half-life of 0.84

hours (lifetime 1.2 hours) assuming a radical concentration of 1

� 106 radicals/cm3.31 Reaction with nitrate radicals during the

overnight hours occurs in a similarly rapid fashion with a rate

constant of 0.7� 10�12 cm3/mol sec and a half-life of 11 hours

(lifetime 16 hours). The atmospheric photodegradation of the

remaining disulfides can be estimated using the AopWIN

(v 1.92) subroutine in the EPI Suite of quantitative structure

activity relationship (QSAR) programs. As shown in Table 3,

the rate of tropospheric photo-oxidation by reaction with

hydroxyl radicals is nearly identical for the 10 disulfides in

DSO with a hydroxyl radical half-life of 0.51 to 0.56 hour. The

atmospheric half-life of each disulfide is therefore approxi-

mately 30 minutes, which meets the definition of a rapidly

removed volatile organic compound. The estimated rates of

DMDS hydroxyl radical reactivity also compared well with the

actual value (0.56 vs 0.84 hour). A small portion of the dis-

crepancy between the measured and the estimated values is

associated with the assumed hydroxyl radical concentrations

used in AopWIN program (1.5 � 106 radicals/cm3). When the

measured values are corrected for this difference, the daytime

half-life decreases to 0.80 hours.

Although no information is available on the aqueous stabi-

lity of DSO, pertinent facts can be derived from an examination

of test data for DMDS. Available information for DMDS indi-

cates that aqueous hydrolysis at ambient temperature is too

slow to be an important environmental fate process when the

pH is less than 12.32 The study suggests that DMDS may

hydrolyze slowly to nonvolatile methane sulfonic acid in water

Table 3. Estimated Environmental Fate Parameters from EPI Suite.

Disulfide
Photo-oxidation
(KOH t½ hours)

Ready biodegradation probability (MITI)
Readily

biodegradableLinear Nonlinear

Dimethyl disulfide 0.56a 0.43 0.46 Nob

Methyl ethyl disulfide 0.55 0.44 0.47 No
Methyl isopropyl disulfide 0.53 0.30 0.26 No
Diethyl disulfide 0.54 0.45 0.47 No
Methyl n-propyl disulfide 0.54 0.45 0.47 No
Ethyl isopropyl disulfide 0.52 0.31 0.26 No
Ethyl n-propyl disulfide 0.53 0.46 0.48 No
Diisopropyl disulfide 0.51 0.31 0.27 No
Ethyl n-butyl disulfide 0.53 0.46 0.49 No
Dipropyl disulfide 0.52 0.46 0.49 No

Abbreviations: EPI, Estimation Program Interface; MITI, Ministry of International Trade and Industry; t½, half-life.
aActual measured value of 0.84 hours.27

bMeasurements reveal no ready biodegradability with 10% loss over 28 days.11

Table 2. Chemical and Physical Properties of a Sample of Disulfide Oil.

Test Result Converted value Method

Flashpoint (closed cup) 64�F 17.8�C ASTM D93
Lower explosive limit 1.0% – DIN 51794
Upper explosive limit 7.6% – DIN 51794
Autoignition temperature 427�F 219.4�C ASTM E659
Vapor pressurea 1.10 psia at 100�F 56.9 mm Hg at 37.8�C ASTM D323
Viscosity 0.58 cst at 40�C – ASTM D445
Vapor specific gravity 4.7 – Classical method
Boiling point (initial)a 232�F 111.1�C ASTM D86
Boiling point (final) 345�F 173.9�C ASTM D86
Melting pointa <�65�F <�53.9�C ASTM D97
Water solubilitya <0.01 wt% at 77�F <0.10 g/L at 25�C Gravimetric
Specific gravity 1.0520 at 60/60�F 1.0520 at 15.6/15.6�C ASTM D891

Abbreviations: ASTM, American Society for Testing and Materials; DIN, Deutsches Institut für Normung.
aRequired information per the High Production Volume Challenge Program.
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at pH 11 to 12. An evaluation of the aqueous hydrolysis of 14C-

radiolabeled DMDS at pH 4, pH 7, and pH 9 in a buffered

solution maintained at 50 �C did not reveal any decay and in

most cases a slight increase in concentration occurred over the

5-day measurement period.33 This conclusion is consistent with

the relative stability of the disulfide bridge to acid–base hydro-

lysis and the absence of any water-sensitive functional groups

such as an ester or epoxide linkage. None of the remaining

disulfides in DSO could be evaluated for aqueous stability,

because the HYDROWIN algorithm for estimating aqueous

stability has only been validated with a limited number of

chemical classes. Using the results for DMDS in a read-

across fashion, the aqueous hydrolysis of DSO is not expected

to be an important environmental fate process.

The biodegradability of DSO can be reasonably estimated

by examining the activity of its key constituents. Although

studies have revealed that low concentrations of DMDS (up

to 1 mmol/L) were completely degraded within 38 days using

adapted, sulfate-reducing sludges, higher concentrations (�
2 mmol/L) were not fully degraded to methanethiol after 50

days of incubation.34 These results contrast with estimates from

the Biodegradation Estimation subroutine (BIOWIN, v 4.00)

within the EPI Suite of QSAR programs. The BIOWIN routine

evaluates the outcomes from 7 different evaluations to deter-

mine the biological degradation of a target chemical under

either aerobic or anaerobic conditions. Each evaluation consid-

ers the activity associated with individual molecular fragments

within the target chemical. The fragments are examined using

coefficient-based multiple linear and nonlinear regression rou-

tines and the resulting values summed up to arrive at a final

probability estimate. Although several of the BIOWIN routines

suggested the probability of disulfide biodegradation is rela-

tively high, it is believed that the most reliable results are

achieved with the Japanese Ministry of International Trade and

Industry (MITI) model, which predicts biodegradability in

accordance with OECD301C test conditions using a training

set containing 900 discrete substances.35 As shown in Table 3,

the MITI probability estimates for the linear and nonlinear

MITI models are less than 0.5, which is the cutoff for assigning

a ‘‘readily biodegradable’’ result. These findings are partially

substantiated by a closed bottle ready biodegradability test per-

formed with DMDS, which indicated that less than 10% of the

test chemical was degraded over a 28-day period.36 Ready

biodegradability, as defined in accordance with OECD guide-

lines, only occurs when at least 60% of a chemical is biologi-

cally removed from the environment within a 28-day period (as

measured by oxygen consumption or CO2 evolution). Accord-

ingly, DSO is expected to fail the biodegradability test and

degrade slowly under aerobic and anaerobic conditions.

Environmental Distribution

The environmental distribution of DSO is inextricably linked

with the behavior of its component disulfides. Preliminary

studies with DMDS and dipropyl disulfide (DPDS) showed that

these 2 disulfides were relatively stable in soil and water.37

DMDS, in particular, was found in many environmental com-

partments and is considered to have an integral role in the

global sulfur cycle.38 Natural background concentrations of

DMDS were measured in a variety of media including air,

surface waters, sediment, wastewater effluent, vegetation, and

expired human air.39 Canadian saltwater lakes, wetland ponds,

and freshwater lakes all exhibited a positive net flux of DMDS

to the atmosphere with average rates as high as 35 mmol S/m2-

day for saltwater lakes, which releases an appreciably higher

mass of DMDS than freshwater lakes.40,41 These atmospheric

release levels are consistent with the moderately high Henry

law constant of 0.0012 atm m3/mol for DMDS. Laboratory

determination of soil organic carbon/water partition coeffi-

cients for DMDS added to 5 soil types yielded values ranging

from 10 to 83 mL/g, which indicate high mobility for DMDS in

the soil compartment.42,43 Aerobic and anaerobic soil biode-

gradation studies with DMDS indicate that bacterial biodegra-

dation to methanesulfonic acid and methanethiol (anaerobic

only) can take place in clay and loam soils; however, the cal-

culation of a biodegradation half-life was hampered by the

rapid volatilization of DMDS from the test system.44,45

Observed half-lives for dissipation and biotransformation ran-

ged from approximately 6 to 10 days under aerobic and anae-

robic conditions. The structural similarity between DMDS and

the remaining disulfides in DSO suggested that analogous pro-

cesses and fates apply.

Evaluation of each disulfide in a multimedia transport model

provides the steady state distribution for a 1000 kg/h emission

load to each of 4 compartments, water, air, soil, and sediment.

The modeling can be performed on any of the 4 levels depending

on the number of processes considered and the amount of detail

required in the results. A Level 1 fugacity analysis performed

using the Equilibrium Criterion Model, v2.02 indicated that vir-

tually 100% of each disulfide is distributed to the air compart-

ment, which is inconsistent with the known partitioning behavior

of the lowest homolog, DMDS. Consequently, a Level III multi-

media fugacity model was selected, since it considers the inter-

compartmental transfer rates between the individual phases.46

The results presented in Table 4 show that all 10 disulfides have

a preference for the water and soil compartments with an

increasing percentage in soil as the dialkyl carbon number

increases from C2 to C6. This systematic shift in steady state

distribution with increasing molecular weight is consistent with

changes in the physical properties of the individual homologs

that are depicted in Table 5. The increase in soil organic carbon/

water partition coefficient (Koc) and decrease in water solubility

with increasing molecular weight explains, to a large degree, the

phase shift observed when moving from the lowest to the highest

homolog in the series.

The ultimate goal of determining the environmental distri-

bution of a chemical is a determination of its environmental

persistence. Persistence is calculated from an assessment of the

environmental rate constant and associated half-life for each

individual compartment, which is then used to compute a

weighted mean rate constant that considers the mass fraction

in each compartment. For the DSO disulfides, the estimated
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half-lives varied only slightly with values of 1.1 hours,

360 hours, 720 hours, and 135 days for air, water, soil, and sedi-

ment, respectively. The mass concentrations in each compartment

did change as a function of molecular weight with greater

redistribution to the sediment compartment resulting in a change

in the overall persistence. As shown in Table 4, the persistence in

the environment ranged from 119 to 350 hours (5-15 days) for the

individual disulfides, which would rank these chemicals as

slightly persistent in the environment. By comparison, the envi-

ronmental behavior of DSO would be dictated by the homolog

with the longest residence time, so it is anticipated that DSO

would have a persistence of at least 15 days.

Ecotoxicity

The structural similarity of the disulfide components of DSO

provides a basis for using QSARs to assess the relative eco-

toxicity of the individual homologs. Any number of QSARs

exist that would reasonably be anticipated to produce a suitable

result. Indeed, initial modeling of DMDS and the remaining

disulfide constituents of DSO using EPA’s Ecological

Structure Activity Relationships (ECOSAR v 0.99g) software

package revealed that the ecotoxicity of the disulfides

increased as a function of alkyl chain length.47 Although this

finding is consistent with the observed increase in octanol/

water partition coefficients for these disulfides (see Table 5),

the results were inconsistent with available test data, which

revealed large disparities between the estimated and the actual

values for several indicators of toxicity. In particular, Table 6

reveals that the ecotoxicity of DMDS to freshwater and marine

organisms was under predicted by a factor of approximately 4

to 96-fold using QSAR routines that assume nonpolar narcosis

as the primary mechanism of action. Drawing upon the existing

literature on potential mechanisms of action for alkyl disul-

fides, QSAR estimates were abandoned since the underlying

mechanism of action was judged to be incorrect, a condition

Table 5. Estimated Physiochemical Constants for DSO.

Disulfide
Vapor pressurea,

mm Hg 25�C
Henry’s law constantb, atm

m3/mole � 103

Carbon/water
partition coeff c

(log Koc)

Octanol/water
partition coeff d

(log Kow)
Water

solubilitye, g/L

Dimethyl disulfide 24.5 (21.98f) 1.21 (1.21f) 1.64 1.87 (1.77f) 3.7 (2.5f)
Methyl ethyl disulfide 7.40 1.61 1.91 2.36 1.06
Methyl isopropyl disulfide 4.92 2.14 2.10 2.78 0.41
Diethyl disulfide 3.31 2.14 2.17 2.86 0.36
Methyl n-propyl disulfide 2.65 2.14 2.17 2.86 0.36
Ethyl isopropyl disulfide 1.77 2.84 2.36 3.27 0.14
Ethyl n-propyl disulfide 0.96 2.84 2.44 3.35 0.12
Diisopropyl disulfide 0.64 3.77 2.63 3.76 0.05
Ethyl n-butyl disulfide 0.35 3.77 2.70 3.84 0.04
Dipropyl disulfide 0.50 3.77 2.70 3.84 0.04

Abbreviations: Coeff, coefficient; DSO, disulfide oil.
aEstimated value from MPBPWIN v 1.42 of EPIWIN Suite v 3.20.22

bEstimated value from HENRYWIN v 3.10 of EPIWIN Suite v 3.20.22

cEstimated value from PCKOCWIN v 1.66 of EPIWIN Suite v 3.20.22

dEstimated value from KOWWIN v 1.67 of EPIWIN Suite v 3.20.22

eEstimated value from WSKOW v 1.41 of EPIWIN Suite v 3.20.22

fActual reported value.13

Table 4. Multimedia Environmental Distribution Estimates for DSO Disulfides.

Disulfide

Environmental distribution, %
Overall persistence,

hoursAir Water Soil Sediment

Dimethyl disulfide 1.0 58.1 40.8 0.2 119
Methyl ethyl disulfide 0.7 41.9 57.2 0.2 160
Methyl isopropyl disulfide 0.5 31.9 67.3 0.4 206
Diethyl disulfide 0.5 29.7 69.4 0.4 220
Methyl n-propyl disulfide 0.5 29.7 69.5 0.4 221
Ethyl isopropyl disulfide 0.3 23.3 75.7 0.7 275
Ethyl n-propyl disulfide 0.3 22.1 76.9 0.7 290
Diisopropyl disulfide 0.2 18.7 79.6 1.4 338
Ethyl n-butyl disulfide 0.2 18.1 80.0 1.6 350
Dipropyl disulfide 0.2 18.1 80.0 1.6 350

Abbreviation: DSO, disulfide oil.
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that occurs frequently when this pathway is invoked indiscri-

minately.49 Alternatively, information was compiled on the

likely mode of action for disulfides, and a qualitative potency

comparison was made for the individual homologs.

Once absorbed, many disulfides are readily reduced to

unstable thiols that may be reoxidized to the disulfide in a

metal-catalyzed reaction that results in the formation of highly

reactive oxygen species (ROS) that can react with nearby

lipids, proteins, and nucleic acids.50 Because this reaction path-

way is cyclical, it can take place for prolonged periods of time

producing large quantities of free radicals through the metabo-

lically generated ROS and the parent disulfide itself.51 The

ROS produced in this reaction can lead to protein interactions

and acute toxicities in aquatic species that are typically more

severe and less uniform for a homologous series than those

elicited by narcotic chemicals.52 These free radicals result in

lipid peroxidation and other adverse effects that are the hall-

mark of an oxidative stress response. Although studied to a

large degree in mammals, redox cycling and oxidative stress

can also occur in aquatic species including marine algae, inver-

tebrates, and mollusks.53,54 In fact, the biochemical events

leading to an oxidative stress response are so similar across the

plant and animal domains that some researchers proposed using

aquatic organisms as a screening tool to investigate the oxida-

tive hazards to humans. Prototypical chemicals capable of

causing oxidative stress in freshwater and marine species

include transition metal ions, pesticides, and quinones.

Despite increased interest in the applicability of this

mechanistic pathway, few substances were evaluated, and no

QSARs were developed as an aid for a category analysis.55 One

group of researchers found that the oxidative stress caused by a

small group of quinones was directly correlated with octanol/

water partition coefficient, with the highest activity in those

chemicals having the lowest Kow.56 Likewise, there are no

systematic studies of the mode of action of disulfides on aqua-

tic or terrestrial species; however, some general principles are

believed to operate based on knowledge gained from studies in

laboratory animals. Perhaps the most important factors affect-

ing toxicity are the length of the alkyl groups and the degree of

substitution on these side chains. Mammalian studies showed

that the reactivity of dialkyl disulfides is inversely related to

their molecular weights, with the lowest homolog, DMDS,

displaying the greatest propensity to form ROS, and producing

an oxidative stress response.57 This relationship logically

applies to marine and freshwater organisms as well, given the

ubiquity of the oxidative stress response throughout the animal

kingdom.58,59 As such, the ecotoxicity of DSO in biological

systems would be dominated by the DMDS content, which is

considerable. These facts justify using the DMDS test data in

Table 7 as a logical and reasonable surrogate for DSO and

provide a basis for using the test results for DMDS in a read-

across fashion for all of the disulfides in DSO.

Additional support for the use of DMDS as a surrogate for

the disulfides in DSO comes from available test data for higher

homologs in the series. When the acute toxicity of DMDS to

fish (0.96 mg/L) is compared to the median lethal dose (LC50)

for diethyl disulfide (DEDS; 7.43 mg/L), DPDS (2.62 mg/L),

and diisopropyl disulfide (8.31 mg/L), there is no apparent

increase in toxicity as a function of chain length.75-77 As

expected, based on the available mechanistic data for redox

cycling, the acute toxicity for freshwater fish declines with

increasing molecular weight. A similar case exists when the

24-hour EC50 value for DEDS (14.5 mg/L) in Daphnia magna

is compared to the concentration obtained with DMDS.78 The

48-hour EC50 value of 7 mg/L for DMDS is 2-fold lower than

the value obtained with DEDS.74 Taken together, these data

indicate that DMDS is a reliable surrogate for the remaining

dialkyl disulfides, and the hazards associated with lower mem-

bers of the series are less than or equal to the ecotoxicity of

DMDS. Additional testing with DSO was therefore deemed to

be unnecessary since the results would not be expected to result

in effect concentrations less than those observed with DMDS

based on mechanistic considerations.

Health Effects

The health effects of DSO were evaluated through the applica-

tion of the categorical approach for a homologous group of

chemicals. Although some published test data are available

on DSO itself, the majority of information has been extracted

from unpublished company reports, peer-reviewed literature,

IUCLID data sets, robust summaries, and/or calculated using

accepted computer modeling programs. In many instances, the

health effect information were used in a read-across manner to

evaluate the toxicity of DSO. The rationale and justification for

establishing this surrogate relationship are based on sound

scientific principles and a plethora of mechanistic information

showing that the dialkyl disulfides in DSO operate through a

common toxic mechanism. This mechanism, which was well

studied and clearly elucidated in the published literature,

focuses on the unique characteristics of the disulfide bridge

and the ease with which free radical intermediates can be

formed once the bridge is cleaved. Since DSO also contains a

Table 6. Comparison of Actual and Estimated Ecotoxicity Values for
Dimethyl Disulfide.

Ecotoxicity end point

Estimated
toxicitya,

mg/L

Measured
toxicityb,

mg/L
Fold

difference

Freshwater fish 96-hour LC50 92.51 0.96 96
Mysid shrimp 96-hour LC50 19.9 4.9 4
Daphnid 48-hour EC50 98.24 1.61 61
Marine fish 96-hour LC50 19.9 5.6 4
Algae 96-hour growth inhibition

EbC50
c

60.96 6.7 9

Earthworm 14-day LC50 635.4 32d 20

Abbreviation: DMDS, dimethyl disulfide; ECOSAR, Ecological Structure Activ-
ity Relationships; LC50, median lethal dose.
aEstimated using ECOSAR (v0.99g).
bSee Table 7 for source of values.
cEbC50 is the value for a 50% reduction in biomass growth.
dActual measured value taken from DMDS material safety data sheet.48
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small fraction of dialkyl trisulfides, whose potency appears to

exceed that of the corresponding disulfide, the relative toxicity

of this class of substances was evaluated as well.

The metabolism of many, if not all, disulfides is initiated by

a thiol-disulfide exchange reaction that substitutes the sulfhy-

dryl group of glutathione for a mercaptide fragment within the

disulfide molecule. This reaction is depicted in Figure 1 for

DPDS, whose in vivo metabolism has been studied in far

greater detail than DMDS.79,80 Evidence shows that this same

initial glutathione exchange reaction also takes place for a host

of alkyl, alkenyl, phenyl, and branched chain disulfides as well

as trisulfides.11,57,81,82 The exchange reaction with glutathione

is catalyzed by a thiol transferase, also known as glutaredoxin,

which is widely distributed in nature and shows a high level of

activity in the tissues and organs primarily affected by dialkyl

disulfide toxicity.83 This reaction is the key step in the toxic

mechanism for dialkyl disulfide and trisulfide congeners. The

activation mechanism is pertinent, because it has been associ-

ated with the initiation of a redox cycle that generates excessive

quantities of highly reactive free radical intermediates capable

of interacting with tissue macromolecules at or near the site

where they formed. In some cases, this site was the hemoglobin

in red blood cells and in other cases the liver, depending on the

species examined.57 Some evidence shows that DMDS is meta-

bolized via the same pathways. Mice treated intraperitoneally

with 35 to 40 mg/kg DMDS were shown to quickly exhale

methyl mercaptan and dimethyl sulfide, which is consistent

with the cleavage and methylation reactions observed with

DPDS.84

The sequence of reactions in the redox cycling of dialkyl

disulfides is depicted generically in Figure 2.11 The first prod-

uct of the initial thiol transferase exchange reaction is an alkyl

mercaptan that once ionized, undergoes a 1-electron oxidation

to a free radical intermediate. This intermediate is the proximal

toxicant responsible for producing a continuous supply of

hydroxyl radicals and other ROS that can sustain the redox

cycling and cause oxidative stress and tissue injury at sites

where they are formed. Importantly, the reactivity of the mer-

captans formed in the exchange reaction is directly affected by

the length and branching pattern of the attached alkyl substi-

tuents, with longer chain lengths leading to reduced radical

stabilization and lower oxidation rates.57 In addition, the reac-

tivity and toxicity of alkyl disulfides have been shown to

decrease in the following order n > sec > tert due to the influ-

ence of steric factors on thiol transferase activity. These data

indicate that DMDS will be the most reactive member of the

series with the longer chain lengths and higher branching

patterns of the remaining homologs ameliorating the toxicity

by affecting the rate of formation and ultimate stabilization of

the free radical intermediates.

Evidence suggests, however, that dialkyl trisulfides are an

exception, with the intensity of radical formation and toxic

potency exceeding that of the corresponding disulfide.

Although DSO is predominantly composed of dialkyl disul-

fides, which are believed to be primarily responsible for the

toxicological effects of this substance due to their prevalence,

the impact of several minor trisulfides may also play some role.

Measurable amounts of the following 4 dialkyl trisulfides

were present in the DSO sample analyzed: dimethyl trisulfide

(1.6%), diethyl trisulfide (0.7%), methyl propyl trisulfide

(0.5%), and diisopropyl trisulfide (0.4%). Although

the mode of action and routes of metabolism for the dialkyl

trisulfides are similar to the disulfides, they were shown to be

more active at causing redox cycling, GSH depletion, and hema-

tological anomalies than the corresponding dialkyl disulfides.85,86

The increase in trisulfide potency is not, however, associated with

an increase in the effective toxicity as defined by the threshold

Table 7. Ecotoxicity of Dimethyl Disulfidea.

Organism
LC50

(mg ai/L)
EC50

(mg ai/L)
NOAEL
(mg ai/L) Reference

Freshwater fish (96 hours)
Rainbow trout 0.96 ND 0.563 60
Zebrafish 7.50 ND 5.30 61

Freshwater invertebrate
(48 hours)
Daphnia 1.61 ND 0.621 62

Algae (96 hours)
Blue-green 63
Cell density – 0.32 <0.17
Biomass – 0.56 0.17
Growth rate – 6.7 0.17
Greenb 64
Cell density – 17 5.73
Biomass – 15 <5.73
Growth rate – ND 11.6
Diatom (freshwater) 65
Cell density – 24 18.8
Biomass – 22 18.8
Growth rate – 30 18.8
Diatom (marine) 66
Cell density – 1.3 <0.48
Biomass – 1.2 <0.48
Growth rate – 3.9 0.95

Marine (96 hours)
Sheepshead minnow 5.6 3.7 <2.3 67
Shrimp (mysid) 4.9 – 2.5 68
Eastern oyster 29 – ND 69

Aquatic plant (7 days)
Duckweed 70
Frond density – 28 3.2
Growth rate – 34 12
Biomass – 48 12

Terrestrial insect (48 hours)
Honeybeec >100 – 100 71

Birds (4 hours)
Bobwhite quail
(inhalation)

478 – – 72

Bobwhite quail (oral)d 342 – – 73

Abbreviations: HPVCP, High Production Volume Challenge Program; LC50,
median lethal dose; EC50, half maximal effective concentration; NOAEL, no
observed adverse effect level; ND, not determined.
aMost recently reported information; some values may differ from those
reported in HPVCP hazard assessment.74

bTest duration was only 72 hours.
cResults given as LD50 in mg/bee.
dResults given as LD50 in mg/kg.
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concentration capable of eliciting an effect. A comparison of the

no observed effect levels (NOELs) from 90-day repeated-dose

studies with DMDS, DPDS, and dipropyl trisulfide (DPTS) indi-

cates that all 3 congeners have similar toxic thresholds (see Table

8). Consequently, although the trisulfides may be more potent

with a steeper dose–response (DR) relationship, the threshold

doses eliciting demonstrable adverse health effects are not sub-

stantially different from DMDS.

Analysis of all available information provides reasonable

support for the use of DMDS as a surrogate for the higher chain

length disulfides and trisulfides in DSO and substantiates the

use of DMDS data in a ‘‘read-across’’ transfer to the other

sulfide-containing substances in the category. The test data for

DMDS is therefore offered as a reliable and mechanistically

supportable substitute for DSO, since the toxicity of the other

constituents is equal to or less than DMDS. This association

does not, however, extend to substances other than DSO that

may contain specific aryl or allylic disulfides whose rate of

redox cycling can be considerably greater than DMDS.50 Simi-

larly, the hemolytic anemia that can accompany exposure to

disulfide or trisulfides-containing substances has been shown

to be highly species specific with cats and dogs being more

vulnerable to erythrocyte damage than rats, mice, or humans.

Acute Toxicity. Oral, dermal, and inhalation studies were per-

formed with DSO. The oral LD50 value was 1590 mg/kg in

female rats and 1700 mg/kg in male rats.93 Gross necropsy

on dead and moribund animals revealed intestines filled with

red fluid and tan-colored lungs. Darkly colored spleens were

noted upon sacrifice of all female rats, with all animals dis-

playing enlarged spleens. In an initial acute oral screening

LD50 study on the same material, both female and male rats

were administered 5000 mg/kg, after which all the animals

died.94 The 4-hour inhalation LC50 value for DSO vapor was

found to be greater than 4.84 mg/L in male and female rats.95
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Figure 1. Typical pathways for the in vivo metabolism of dialkyl disulfides.

2 GSH + RSSR ↔ GSSG + 2 RSH 

RSH ↔ RS– + H+

(Hb)Fe3O2
• – + RS– + 2H+ → (Hb)Fe3 + RS• + H2O2

RS• + RS–↔ (RSSR) • –

(RSSR) • – + 02 → RSSR + 02
• –

RSH + 02
• – + H+ → RS• + H2O2 

      R = alkyl side chain 

Figure 2. Mechanism of redox cycling and free radical formation from
dialkyl disulfide metabolism.
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The dermal LD50 value was greater than 1800 mg/kg in rab-

bits.96 Mild to moderate irritation was observed in a Draize

rabbit skin test, and the same test material was determined to

be minimally irritating in rabbit eyes.97,98 The DSO was not a

dermal sensitizer in a guinea pig sensitization test.99

Comparable studies with DMDS revealed an oral LD50

value for rats of greater than 190 mg/kg, a dermal LD50 value

for rabbits that was greater than 2000 mg/kg, and a 4-hour

inhalation LC50 value for rats of 805 ppm (3.10 mg/L).100-102

A concentration-related increase in olfactory epithelial degen-

eration was observed in the nasal turbinates of rats exposed to

8.9, 12.6, and 18.4 ppm of DMDS for 24 hours, but a 5.0 ppm

exposure for the same duration was free from this effect.103 A

functional observational battery performed on rats exposed to

100, 200, or 700 ppm of DMDS for 6 hours revealed an

increased incidence of partial eyelid closure, grooming beha-

vior, and urination, and a decrease in motor and locomotor

activity at the highest exposure concentration.104 The NOEL

for these effects was 200 ppm. The preceding data suggest that

DMDS is more acutely toxic than DSO by both the oral and the

inhalation routes. By comparison, a single rat oral LD50 value

of greater than 2000 mg/kg has been reported for DPDS.77 In

addition, a single 5-hour exposure of male rats to a saturated

atmosphere of 4390 ppm (21.95 mg/L) of DEDS resulted in the

death of all animals; whereas 5 of 6 animals exposed to

2156 ppm (10.78 mg/L) succumbed.105 An approximate oral

LD50 value ranging between 800 and 1600 mg/kg was found in

mice treated with DPTS.106

Some disulfides, in particular DMDS and DPDS, have been

shown to cause mild to severe red blood cell hemolysis in cats,

dogs, and a variety of livestock animals following oral

ingestion.57,107,108 Vegetables, particularly onions and onion

oil, containing relatively high amounts of these and other dis-

ulfides have long been associated with hemolytic anemia fol-

lowing accidental or intentional ingestion by dogs and farm

animals.11,109 Rats, however, are more resistant to dialkyl, but

not diaryl, disulfide-induced hemolytic damage.12

Repeated-Dose Toxicity. No repeated-dose studies were reported

for DSO, but subchronic studies are available for DMDS,

DPDS, and DPTS. In most cases, these studies have been per-

formed by the inhalation route; however, in some instances,

oral treatment has been utilized. In addition, 5- to 10-day

repeated dose studies have been performed in rats with DEDS,

DPDS, and DPTS. To facilitate comparison, route-to-route

extrapolations have been performed for some of the key studies

using the default body weight (0.3 kg) and ventilation rate (0.24

L/min) for the rat.92

DMDS has been examined in 5 separate, well-designed der-

mal and inhalation studies. In the first study, male and female

rats were exposed to 10, 50, 150, or 250 ppm (0.04, 0.19, 0.58,

or 0.96 mg/L) DMDS 6 hours/d for 90 days.110 Findings

included decreases in body weight and food consumption,

reduced thymus gland weights, and increased liver weights.

Possible reductions in hemoglobin, red blood cell count, and

packed cell volume were observed at the highest concentration.

Histopathological changes were noted in the nose and spleen.

Treatment-related changes in alanine aminotransferase, alka-

line phosphatase, and total bilirubin indicated some degree of

liver involvement. The no observed adverse effect levels

(NOAEL) for this study was 10 ppm (11.1 mg/kg/d). In the

second inhalation study, rats were exposed for 13 weeks to 5,

25, or 125 ppm (0.02, 0.10, or 0.48 mg/L) DMDS for

6 hours/d.88 A treatment-related decrease in body weight gain,

food consumption, and thymus weight was observed along with

an increase in adrenal gland weight. Histopathology did not

reveal any increase in the incidence or severity of abnormal

tissue alterations relative to controls. Statistically significant

decreases were also noted in serum alanine and aspartate ami-

notransferases and blood urea nitrogen at the 2 highest expo-

sure concentrations; however, they were not considered

toxicologically significant since they were not associated with

any pathological changes. The NOAEL was 5 ppm (5.6 mg/kg/

d) for male rats and 25 ppm (0.10 mg/L) for female rats.

The 2 dermal studies were performed in male and female

New Zealand rabbits treated with DMDS for 6 hours/d by

applying the neat material under an occlusive bandage.13 In

the first range-finding study, animals treated with DMDS levels

of 0.1, 0.5, or 1 mL/kg/d (106, 505, or 1063 mg/kg/d) for 14

days caused dose-related lethargy or unconsciousness in all

Table 8. A Comparison of the Results from Repeated-Dose Studies With Dialkyl Disulfides and Trisulfides.

Chemical Test species Dose regimen NOAELa LOAELa Reference

Dimethyl disulfide rats—_, \ 13-week inhalation
(6 hours/d)

10 ppm _,\ (11.1 mg/kg/d) 50 ppm _, \ (55.5 mg/kg/d) 87

rats—_, \ 13-week inhalation
(6 hours/d)

5 ppm _ (5.6 mg/kg/d) 25 ppm \
(27.8 mg/kg/d)

25 ppm _ (27.8 mg/kg/d) 125 ppm
\ (138.8 mg/kg/d)

88

Diethyl disulfide rats—_, \ 10-day inhalation
(6 hours/d)

50 ppm _, \ (72 mg/kg/d) 150 ppm _, \ (216 mg/kg/d) 89

Dipropyl disulfide rats—_, \ 90-day feeding 7.3 mg/kg/d _ 8.2 mg/kg/d \ ND 90
rats—\ 5-day gavage 75 mg/kg/d \ ND 86

Dipropyl trisulfide rats—_, \ 90-day feeding 4.2 mg/kg/d _, \ ND 91
rats—\ 5-day gavage ND 91 mg/kg/d \ 86

Abbreviations: ND, Not determined (single dose level administered); NOAEL, no observed adverse effect level; LOAEL, lowest-observed-adverse-effect level.
aRoute-to-route extrapolations performed using default ventilation rate and body weight values.92
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treatment groups that dissipated by the end of the day.111

Severe treatment-related skin lesions were also observed in all

3 treatment groups. Although a NOAEL could not be deter-

mined, a LOAEL of 106 mg/kg/d was assigned. In the second

study, the rabbits were treated dermally at levels of 0.01, 0.1, or

1 mL/kg/d (10.6, 106.3, or 1063 mg/kg/d) for 28 days.112 Con-

sistent with the range-finding studies, dose-related changes in

lethargy and skin irritation were also observed in the more

prolonged study. After 13 days, mortality was observed in the

rabbits from the high-dose group, so treatment was terminated.

The male rabbits from the high-dose group also displayed some

abnormal changes in hematology and clinical chemistry

measurements that were not observed in the female rabbits. His-

topathological examination and organ weight measurements did

not reveal any treatment-related changes in the adrenals, brain,

heart, kidneys, liver, lungs, ovaries, testis, thyroid, or thymus. The

NOAEL for systemic effects was 10.6 mg/kg/d, and the NOAEL

for localized dermal irritation was less than 10.6 mg/kg/d.

A subchronic neurotoxicity study performed in rats exposed

to 5, 20, or 80 ppm (0.02, 0.08, or 0.31 mg/L) 6 hours/d and 7

days/week for 13 weeks produced only mild effect.113 The treat-

ments showed no apparent effect in the functional observational

battery or on motor activity. Histopathological examination of

the nervous system was similarly unremarkable as were mea-

surements of brain weight and length. The NOEL for neurotoxic

effects was 80 ppm (88.7 mg/kg/d); however, the observed

degeneration of olfactory epithelium in both sexes resulted in

an overall subchronic NOEL of 5 ppm (5.6 mg/kg/d).

A 90-day oral feeding study with DPDS did not reveal any

toxic effects following the dietary administration of 7.3 mg/kg/

d or 8.2 mg/kg/d to male or female rats, respectively.90 Food

consumption and body weights were recorded weekly, and

hematological examinations and blood urea nitrogen measure-

ments were performed on half of the animals at 7 weeks and on

the remaining animals at 13 weeks. A slight nonstatistical

increase in blood urea nitrogen was observed at the end of the

study. Organ weight measurements, gross examinations, and

tissue histopathology performed at necropsy failed to show any

treatment-related effects. Similarly, male and female rats admi-

nistered a single dose of 4.8 mg/kg DPTS in their feed for 90-

days did not exhibit any signs of toxicity.91 Thorough clinical

examinations were performed including clinical chemistry, uri-

nalysis, hematology, and histopathology. Erythrocyte counts,

hemoglobin levels, and hematocrit were all within the normal

range.

The toxicity of DPDS and DPTS was also evaluated in

female rats following a 5-day oral treatment with an equimolar

dose level of 75 mg/kg/d or 91 mg/kg/d, respectively.86 Com-

pared to untreated controls, DPTS but not DPDS produced a

statistically significant decrease in packed red cell volume and

hemoglobin levels along with an increase in relative spleen

weight. In addition, the trisulfide caused an increase in splenic

and hepatic erythropoietic activity that was not observed with

the disulfide. Glutathione depletion, methemoglobin forma-

tion, and hydrogen peroxide formation were also more severe

with DPTS than DPDS. These data along with enzyme activity

measurements demonstrated that DPTS was a more potent

inducer of ROS formation and hematological toxicity than

DPDS.

A 10-day inhalation study is available with DEDS in male

and female rats at exposure levels of approximately 50, 150, or

450 ppm (0.25, 0.75, or 2.25 mg/L).89 Gross examination along

with histopathology, hematology, and clinical measurements

revealed that decreased body weight gain was the only affected

end point at the lowest exposure level. Female rats exposed at

50 ppm did, however, exhibit darkened spleens. The 150-ppm

exposure group displayed changes in body weight and relative

organ weight, whereas the 450-ppm group showed clear evi-

dence of hemolytic anemia with significant decreases in red

blood cell counts, hemoglobin, and packed red cell volume.

Other gross and histopathological abnormalities observed in

the 450 ppm exposure group included a statistically significant

decrease in absolute liver and testis weight in male rats, an

absolute and relative increase in spleen weight, and evidence

of extramedullary hematopoiesis in the liver and spleen. The

NOAEL and LOAEL from this study were determined to

be 50 ppm (72 mg/kg/d) and 150 ppm (216 mg/kg/d),

respectively.

Despite in vivo and in vitro evidence suggesting that trisul-

fides could be more toxic than the corresponding disulfides, an

examination of the findings from repeated dose studies indi-

cates that this difference is limited to potency with no shift of

toxic thresholds (see Table 8). This is evident from a compar-

ison of the 90-day results for DPDS and DPTS, which shows no

appreciable difference in the NOAELs for these 2 chemicals.

Consequently, the observed difference in oxidative stress and

redox cycling for disulfides and trisulfides represents a differ-

ence in toxic potency rather than a change in the effective

threshold dose capable of eliciting a toxic response. Although

the disulfides and trisulfides operate through a common mode

of action, the difference is strictly a matter of response intensity

rather than response threshold. The results displayed in Table 8

are consistent with this supposition and show that of the dis-

ulfides and trisulfides examined, all displayed relatively similar

no-effect levels. Consequently, from a risk perspective, DMDS

can serve as a proxy for the dialkyl disulfides and trisulfides in

DSO, since the no-effect levels observed in repeated dose

studies are not substantially different.

Genotoxicity. Although there are no results available for DSO,

DMDS has been examined in a variety of in vivo and in vitro

genetic toxicology screening assays.13 The test results revealed

that DMDS was negative in bacterial mutagenicity assays, neg-

ative in mammalian mutagenicity tests, and negative for DNA

damage and repair.114-116 Except for the DNA damage and

repair assay, these tests were performed in the presence and

absence of metabolic activation. A more recent mutagenicity

study with Salmonella typhimurium strains TA 98, TA 100, TA

135, TA 1537, and Escherichia coli strain WP2 uvrA failed to

produce a positive result with or without activation at DMDS

concentrations ranging from 1.5 to 5000 mg/plate.117 Similarly,

negative results were obtained when DMDS was evaluated
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in vivo in a mouse micronucleus assay at inhalation concentra-

tions of 250 or 500 ppm, and DMDS did not cause unscheduled

DNA synthesis in the hepatocytes of rats exposed to

500 ppm.118,119 A second micronucleus assay performed in rats

exposed to 212, 425, or 850 ppm for 4 hours yielded similarly

negative results.120 Chromosomal aberrations were detected

with and without S9 activation in primary human lymphocyte

cultures from male volunteers, but only under maximum in

vitro exposure conditions, which proved cytotoxic (300 mg/

mL DMDS for 2 or 24 hours).121 By comparison, DPDS did

not cause any reverse mutations in an Ames S. typhimurium

assay using strain TA98.122 None of the disulfides in DSO were

judged to be genotoxic by an expert knowledge-based system

used to predict the health effects of untested chemical

substances (Derek, v 9.0.0).123

Reproductive and Developmental Toxicity. Although no studies

were reported on the reproductive or developmental toxicity

of DSO, DMDS has received a great deal of attention.

The DMDS was evaluated in rats or rabbits using reproductive,

prenatal, lactational, or developmental study designs. These stud-

ies were performed using the inhalation route of exposure using

established methodologies for assessing the appearance of an

adverse effect. Most of these studies were performed in rats, but

a single teratology study was performed in a group of 24 pregnant

rabbits exposed to 15, 45, or 135 ppm (0.06, 0.18, or 0.53 mg/L) of

DMDS for 6 hours/d on day 6 through day 28 of gestation.124 The

DMDS exposures did not result in any treatment-related effects

on the fetuses; however, a decrease in food consumption in the

does exposed to highest exposure concentration resulted in a

maternal NOEL of 45 ppm. The NOEL for teratogenicity was

determined to be 135 ppm.

Range-finding and detailed teratology studies were also

performed in rats exposed by the inhalation route. The range

finding assessment was performed in pregnant dams exposed

for 6 hours/d on day 6 through day 15 of gestation to 10, 50, or

250 ppm (0.04, 0.19, or 0.96 mg/L) of DMDS.125 Treatment-

related reductions in body weight gain and food consumption

were observed in all-treatment groups, but pregnancy inci-

dence, intrauterine death incidence, preimplantation loss, litter

size, sex ratio, and the incidence of malformations were all

within the normal range. Mean fetal weights showed an

exposure-related reduction in all-treatment groups that was

considered to be an equivocal finding. The maternal NOAEL

was determined to be less than 10 ppm. In the subsequent

detailed study, 3 groups of 30 mated female rats were exposed

to DMDS by whole-body exposure at 5, 15, or 50 ppm (0.02,

0.06, or 0.19 mg/L) for 6 hours daily from day 6 to day 15 of

gestation.126 All animals were maintained until day 20 of gesta-

tion and then sacrificed. No deaths or unusual lesions were

observed, but a higher incidence of rough hair coat was seen

at 50 ppm. Clinical conditions at 5 and 15 ppm did not differ

from controls. Treatment-related reductions in weight gain

were observed at 15 and 50 ppm. Food intake was lower than

controls at 50 ppm but comparable at 5 and 15 ppm. There was

no effect of the treatment on pre- or postimplantation loss, litter

size, or sex ratio. Maternal toxicity was noted at 15 and 50 ppm,

but there was no evidence of developmental effects. Litter and

fetal weights were reduced at 50 ppm. No malformations were

observed in fetuses from the treated groups. A slightly higher

incidence of retarded ossification was observed at 50 ppm,

which indicated delayed maturation as a result of the lower

fetal weight rather than overt teratogenicity. The NOELs for

maternal toxicity, fetotoxicity, and teratogenicity were 5, 15,

and 50 ppm, respectively.

A range-finding developmental neurotoxicity test was per-

formed in lactating dams with nursing litters. The study was

conducted in rats exposed to 2, 20, or 80 ppm (0.008, 0.08, or

0.30 mg/L) for 6 hours/d on postpartum days 5 through 20.127

The dams showed no treatment-related effects on mortality or

mean body weights; however, food consumption was decreased

in the high-exposure group. The offspring showed no

treatment-related effects on survival, but the mean body weight

was affected in the dams exposed to 80 ppm. The maternal and

developmental NOEL was found to be 20 ppm. Similar find-

ings were obtained in a lactational study performed in a group

of 36 nursing rats exposed to 5, 20, or 80 ppm (0.02, 0.08, or

0.30 mg/L) of DMDS for 6 hours/d on either day 5 through 12

(subset I), day 13 through 20 (subset II), or day 5 through day

20 (subset III) of lactation.128 The dams in subset I and III

showed a decrease in mean body weight gain at the 2 highest

exposure concentrations (20 and 80 ppm), whereas the dams in

subgroup II only showed a decrease following the 80-ppm

exposure. The dams in subset I and II also showed a decrease

in food consumption. Offspring survival and body weight gain

were unaffected in all exposure concentrations and treatment

subgroups. These findings resulted in a maternal NOEL of

5 ppm and a developmental NOEL of 80 ppm.

A prenatal teratogenicity study was performed in a group of

27 mated rats exposed to 5, 20, or 80 ppm (0.02, 0.08, or 0.30

mg/L) of DMDS for 6 hours/d on day 6 through day 19 of

gestation.129 The dams in the 20- and 80-ppm exposure group

showed a decrease in weight gain and a decline in food con-

sumption. Fetuses in the high-exposure group displayed a

decrease in food consumption and delayed ossification of the

sternebra and other bones. Based on these findings, the mater-

nal NOEL was determined to be 5 ppm, and the NOEL for

teratogenic effects was 20 ppm. The effects of DMDS on repro-

ductive organs were assessed in male and female rats exposed

to 10, 50, 150, or 250 ppm (0.04, 0.19, 0.58, or 0.96 mg/L)

DMDS for 6 hours/d for 90 days.110 Tissue histopathology did

not reveal any lesions or damage to the epididymides, prostate,

or testes of the male rats nor ovaries or uterus of female rats.

Finally, a 2-generation reproductive study was performed in

a group of 30 rats exposed to 5, 20, or 80 ppm (0.02, 0.08, or

0.30 mg/L) of DMDS for 6 hours/d, 7 days/week through the

F0 and F1 generation.130 The F0 generation was exposed for 10

weeks prior to mating up through day 20 of gestation. Expo-

sures were then suspended from day 21 of gestation through

day 4 of lactation and resumed on day 5 of lactation to weaning.

Mean body weight and food consumption declines were ini-

tially noted in male and female rats from both generations
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exposed to 20 or 80 ppm. The exposures did not adversely

affect litter size or pup survival, but mean body weight declines

were observed at all treatment levels for males from the F1

generation. This change was more severe for the 5-ppm expo-

sure throughout the lactation period and was not found to be

treatment related. No adverse effects were observed for sper-

matogenesis, reproductive performance, or parturition. The

parental NOEL was determined to be 5 ppm based on the body

weight declines. The reproductive and developmental NOELs

were found to be 80 ppm based on the lack of any notable

treatment-related effects in the dams or offspring from either

generation.

Carcinogenicity. The carcinogenicity of DSO or its individual

disulfide or trisulfide constituents was not specifically deter-

mined in long-term animal studies. An examination of ancillary

evidence suggests, however, that dialkyl disulfides and trisul-

fides are not likely to pose an appreciable carcinogenic hazard

to humans by any route of exposure. As stated previously,

DMDS and DMTS are present in garlic and other Allium spe-

cies in sizable concentrations ranging from approximately 2 to

20 mg/g, and repeated epidemiological studies have generally

shown a decrease in stomach, esophageal, and colorectal can-

cers in those who regularly consume large amounts of Allium

vegetables.131 Although this effect is generally attributed to the

diallyl disulfide and trisulfide contents, the antineoplastic

effects of the dialkyl disulfides and trisulfides cannot be com-

pletely overlooked. The relative concentration ratio of DMDS,

DMTS, diallyl disulfide, and diallyl trisulfide in a typical garlic

bulb is in the order 1:7:220:410 with high levels of other

diallylic compounds also present.

Genotoxicity studies with DMDS have generally been neg-

ative with little evidence of a mutagenic response in either

prokaryotic or eukaryotic cell systems. This finding is not sur-

prising, given the absence of any structural alerts that typify a

chemical with mutagenic or carcinogenetic potential.132

Although much has been written on the potential therapeutic

effects of disulfides and their ability to inhibit chemically

induced DNA damage, these effects need to be tempered with

the knowledge that disulfides and trisulfides are potentially

capable of causing oxidative DNA damage through ROS

generation.133,134 However, research to date suggests that the

beneficial effects of dietary dialkyl disulfide and trisulfide

exposure outweigh the risks of any long-term health effects.50

Conclusions

The preceding examination of the physical properties, health

effects, and mode of action of the disulfides in DSO demon-

strates that DMDS can be used as a reasonable worst-case

surrogate for this substance. Strong and consistent mechanistic

evidence shows that DMDS is at least as toxic as other dialkyl

disulfides and trisulfides, and that the higher molecular weight

sulfur-containing chemicals in DSO do not pose a greater

health threat or environmental hazard. A presentation of all

available findings to the USEPA under the HPVCP resulted

in Agency agreement that all testing requirements were met

under this voluntary agreement with no appreciable data gaps

requiring further testing.8 An examination of all available evi-

dence indicates that DSO is highly hazardous to aquatic organ-

isms with moderate environmental persistence. The DSO is

also predicted to possess low to moderate acute toxicity, but

high subchronic toxicity with a NOAEL less than 25 mg/kg/d.

The potential for genotoxic, carcinogenic, and reproductive/

developmental effects is not predicted to be a source of con-

cern. This case study provides a good example of how structure

activity considerations can be effectively used to identify the

health hazards of a substance containing chemically related

congeners, thereby saving time and eliminating the need for

unnecessary animal testing.
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